Developmental Heterogeneity of Pulmonary Endothelial Phenotype at Single Cell Resolution
单细胞分辨率肺内皮表型的发育异质性
基本信息
- 批准号:10211048
- 负责人:
- 金额:$ 70.82万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-15 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:APLN geneATAC-seqAdultAffectAirAir SacsAlveolarAlveolar Cell Type IAppearanceAreaAutomobile DrivingBirthBlood VesselsBronchopulmonary DysplasiaCell ProliferationCellsChronicComplicationCuesDataData SetDevelopmentDiseaseDistalEndothelial CellsEndotheliumExperimental ModelsGasesGene ExpressionGene Expression ProfileGenesGenetic TranscriptionGrowthHeterogeneityHyperoxiaImageImpairmentIn VitroInfantKITLG geneKnockout MiceKnowledgeLifeLigandsLungMediatingMicrocirculationMolecularMusNatural regenerationNeonatal Hyperoxic InjuryOrganPathway interactionsPerinatalPhasePhenotypePopulationPremature BirthProcessResolutionRoleSignal TransductionStimulusSurfaceTestingTimeTransgenic OrganismsTranslatingWorkangiogenesisblood vessel developmentin vivoloss of functionlung developmentlung injurymigrationmouse modelnovelnovel strategiesnovel therapeutic interventionpaternal imprintpostnatalpostnatal developmentprematureprogenitorrapid growthreceptorreceptor expressionresponseself-renewalsingle-cell RNA sequencingstemstem cellstargeted treatmenttranscription factortranscriptomicsvirtual
项目摘要
Postnatal lung growth during alveolarization markedly increases gas exchange surface area. Rapid
growth of the pulmonary vasculature during early alveolarization drives distal lung growth. As alveolarization
slows, the vasculature transitions from a phase of angiogenic growth to quiescence, however the molecular
mechanisms regulating this transition remain poorly defined. This gap in knowledge confounds efforts to develop
targeted therapies to treat diseases of dysregulated angiogenesis and impaired alveolarization, including
bronchopulmonary dysplasia, the most common complication of preterm birth. We recently employed single cell
transcriptomics to define endothelial cell (EC) diversity during postnatal lung development and to identify novel
mechanisms regulating pulmonary angiogenesis and quiescence. Our preliminary data identified a tremendous
increase in EC diversity after birth, marked by the appearance of numerous transcriptionally distinct clusters. A
highly proliferative EC cluster is abundant before birth, virtually disappears just after birth, but peaks again at
early alveolarization, a time of exponential pulmonary angiogenesis. The microvascular EC (MEC) broadly
separated into Car4 expressing (Car4+) and Car4- MEC. In contrast with gradual changes in gene expression
in the Car4+ MEC over time, gene expression changed dramatically in the Car4- MEC, with separation of this
population into two transcriptionally distinct clusters of “early” (P1-P7) and “late” (P21) Car4- MEC. High
expression of the paternally imprinted gene-3 (Peg3), a gene expressed by self-renewing progenitor cells,
distinguished the “early” from the “late” Car4- MEC. Peg3 also enhances NFkB signaling, a pathway we
previously identified as essential for pulmonary angiogenesis during early alveolarization. Of note, the expression
of receptor-ligand pairs suggested that cross-talk stemming from the Car4+ MEC may promote pro-proliferative
and pro-angiogenic signaling in the Car4- MEC. Taken together, our data suggest the overall hypothesis that the
early Car4- MEC represent a specialized, highly proliferative and angiogenic EC population required for the rapid
growth of the pulmonary vasculature during early alveolarization, which will be tested through three specific aims.
Aim 1 will utilize transgenic and cell-specific knock out mice, advanced imaging, and loss of function studies in primary
EC to probe the role of Peg3 in promoting proliferation, angiogenesis and NFkB activation in Car4- MEC. Aim 2 will
use FACS sorted Car4+ and Car4- MEC and a novel mouse model permitting targeting of Car4+ MEC to test if
interaction between these two distinct MEC promotes postnatal angiogenesis. Finally, Aim 3 will employ
computational ligand-receptor analysis, ATAC-Seq, and EC-specific knock out mice to determine if chronic
hyperoxia impairs angiogenesis by impairing Car4- MEC proliferation, Peg3-mediated self-renewal and Car4+
and Car4- MEC cross-talk. The successful completion of these studies will provide a deep view of pulmonary
vascular development at single cell resolution, and identify new pathways that may be translated into novel
strategies to enhance lung growth and regeneration in diseases marked by impaired pulmonary angiogenesis.
出生后肺泡化过程中的肺部生长显着增加了气体交换表面积。
早期肺泡化过程中肺血管的生长驱动远端肺的生长。
减慢,脉管系统从血管生成阶段过渡到静止阶段,但是分子
监管这一转变的机制仍然不明确,这种知识差距阻碍了发展努力。
治疗血管生成失调和肺泡化受损疾病的靶向疗法,包括
支气管肺发育不良是早产最常见的并发症,我们最近采用了单细胞。
转录组学可定义出生后肺发育过程中的内皮细胞 (EC) 多样性并识别新的
我们的初步数据发现了巨大的调节肺血管生成和静止的机制。
出生后 EC 多样性增加,以大量转录上不同的 A A 簇的出现为标志。
高度增殖的 EC 簇在出生前大量存在,出生后几乎消失,但在出生时再次达到峰值
早期肺泡化,即指数肺血管生成的时期。
与基因表达的逐渐变化相反,分为Car4表达(Car4+)和Car4-MEC。
随着时间的推移,在 Car4+ MEC 中,Car4- MEC 中的基因表达发生了巨大变化,并且与此分离
群体分为两个转录上不同的簇:“早期”(P1-P7)和“晚期”(P21)Car4-MEC。
父系印记基因 3 (Peg3) 的表达,这是一种由自我更新祖细胞表达的基因,
区分“早期”和“晚期”Car4-MEC 还增强 NFkB 信号传导,这是我们的一个途径。
先前被认为对于早期肺泡化过程中的肺血管生成至关重要,值得注意的是,该表达。
受体-配体对的研究表明,Car4+ MEC 产生的串扰可能促进促增殖
综上所述,我们的数据表明总体假设是:
早期 Car4-MEC 代表了快速增殖所需的专门的、高度增殖和血管生成的 EC 群体。
早期肺泡化过程中肺血管系统的生长,将通过三个特定目标进行测试。
目标 1 将利用转基因和细胞特异性敲除小鼠、先进成像和初级功能丧失研究
EC 探究 Peg3 在 Car4-MEC 中促进增殖、血管生成和 NFkB 激活的作用。
使用 FACS 分选的 Car4+ 和 Car4- MEC 以及允许靶向 Car4+ MEC 的新型小鼠模型来测试是否
这两种不同的 MEC 之间的相互作用促进出生后血管生成。最后,目标 3 将采用。
计算配体-受体分析、ATAC-Seq 和 EC 特异性敲除小鼠以确定是否患有慢性
高氧通过损害 Car4-MEC 增殖、Peg3 介导的自我更新和 Car4+ 来损害血管生成
和Car4-MEC串扰这些研究的成功完成将提供对肺部的深入了解。
以单细胞分辨率观察血管发育,并确定可转化为新途径的新途径
在以肺血管生成受损为特征的疾病中增强肺生长和再生的策略。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Cristina Maria Alvira其他文献
Cristina Maria Alvira的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Cristina Maria Alvira', 18)}}的其他基金
Pericytes and postnatal alveolarization: Role of hypoxia inducible factors
周细胞和出生后肺泡化:缺氧诱导因素的作用
- 批准号:
10615235 - 财政年份:2022
- 资助金额:
$ 70.82万 - 项目类别:
Pericytes and postnatal alveolarization: Role of hypoxia inducible factors
周细胞和出生后肺泡化:缺氧诱导因素的作用
- 批准号:
10467727 - 财政年份:2022
- 资助金额:
$ 70.82万 - 项目类别:
Developmental Heterogeneity of Pulmonary Endothelial Phenotype at Single Cell Resolution
单细胞分辨率肺内皮表型的发育异质性
- 批准号:
10678976 - 财政年份:2021
- 资助金额:
$ 70.82万 - 项目类别:
Diverse Homeostatic Roles for Distinct Macrophages in the Developing Lung Vasculature
不同巨噬细胞在发育中的肺血管系统中的多种稳态作用
- 批准号:
10583456 - 财政年份:2021
- 资助金额:
$ 70.82万 - 项目类别:
Diverse Homeostatic Roles for Distinct Macrophages in the Developing Lung Vasculature
不同巨噬细胞在发育中的肺血管系统中的多种稳态作用
- 批准号:
10362528 - 财政年份:2021
- 资助金额:
$ 70.82万 - 项目类别:
Novel pathways regulating calcium mediated contractility in the pregnant uterus
调节妊娠子宫钙介导的收缩性的新途径
- 批准号:
9893885 - 财政年份:2018
- 资助金额:
$ 70.82万 - 项目类别:
Novel pathways regulating calcium mediated contractility in the pregnant uterus
调节妊娠子宫钙介导的收缩性的新途径
- 批准号:
10373975 - 财政年份:2018
- 资助金额:
$ 70.82万 - 项目类别:
Novel Molecular Mechanisms Regulating Postnatal Pulmonary Angiogenesis
调节产后肺血管生成的新分子机制
- 批准号:
9265926 - 财政年份:2014
- 资助金额:
$ 70.82万 - 项目类别:
Novel Molecular Mechanisms Regulating Postnatal Pulmonary Angiogenesis
调节产后肺血管生成的新分子机制
- 批准号:
9059764 - 财政年份:2014
- 资助金额:
$ 70.82万 - 项目类别:
Novel Molecular Mechanisms Regulating Postnatal Pulmonary Angiogenesis
调节产后肺血管生成的新分子机制
- 批准号:
8686276 - 财政年份:2014
- 资助金额:
$ 70.82万 - 项目类别:
相似国自然基金
基于ATAC-seq策略挖掘穿心莲基因组中调控穿心莲内酯合成的增强子
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
基于单细胞ATAC-seq技术的C4光合调控分子机制研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于ATAC-seq技术研究交叉反应物质197调控TFEB介导的自噬抑制子宫内膜异位症侵袭的分子机制
- 批准号:82001520
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
单细胞RNA和ATAC测序解析肌肉干细胞激活和增殖中的异质性研究
- 批准号:31900570
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
人类胎盘合体滋养层形成分子机制及其与子痫前期发生关联的研究
- 批准号:31900602
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Sex, Physiological State, and Genetic Background Dependent Molecular Characterization of CircuitsGoverning Parental Behavior
控制父母行为的回路的性别、生理状态和遗传背景依赖性分子特征
- 批准号:
10661884 - 财政年份:2023
- 资助金额:
$ 70.82万 - 项目类别:
High resolution genomic and epigenomic mapping of the human salivary gland
人类唾液腺的高分辨率基因组和表观基因组图谱
- 批准号:
10727190 - 财政年份:2023
- 资助金额:
$ 70.82万 - 项目类别:
Glyoxalase 1 and its Role in Metabolic Syndrome
乙二醛酶 1 及其在代谢综合征中的作用
- 批准号:
10656054 - 财政年份:2023
- 资助金额:
$ 70.82万 - 项目类别:
Epigenetic control of spermatogonial stem cell self-renewal
精原干细胞自我更新的表观遗传控制
- 批准号:
10656855 - 财政年份:2023
- 资助金额:
$ 70.82万 - 项目类别:
Gene regulatory network control of olfactory cortex cell type specification
嗅觉皮层细胞类型规范的基因调控网络控制
- 批准号:
10656692 - 财政年份:2023
- 资助金额:
$ 70.82万 - 项目类别: