Examining the Intersection of Transitional Metals and Kinase Signal Transduction Networks
检查过渡金属和激酶信号转导网络的交叉点
基本信息
- 批准号:10213092
- 负责人:
- 金额:$ 38.69万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-01 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:BiochemistryBiophysicsCardiovascular DiseasesCell DeathCell ProliferationCell divisionCell physiologyCellsCommunicationCopperCuesDevelopmentDietary intakeDiseaseEnzymesEquilibriumExcretory functionFailure to ThriveGoalsGrowthHealthHepatolenticular DegenerationHomeostasisHumanImpaired wound healingInheritedInterventionLinkMAP Kinase GeneMAP2K1 geneMalignant NeoplasmsMapsMenkes Kinky Hair SyndromeMetabolismMicronutrientsMolecularMolecular BiologyNutrientPathway interactionsPatientsPharmacologyPhenotypePhosphotransferasesPhysiologyPrevalenceProcessProteinsSignal PathwaySignal TransductionSignal Transduction PathwayStructureTherapeuticTransition ElementsWorkabsorptionbasebiological systemscell growthcofactorfunctional genomicsin vivointerdisciplinary approachmouse modelnon-alcoholic fatty liver diseasenovelrare genetic disorderresponsetumorigenesis
项目摘要
PROJECT SUMMARY/ ABSTRACT
Normal physiology relies on the precise coordination of intrinsic cues, in the form of intracellular signal
transduction pathways, with extrinsic cues like nutrient availability to balance cell growth and cell death.
Transition metals such as copper (Cu) are tightly regulated micronutrients that function as structural or catalytic
cofactors for proteins that are critical for normal physiology and development. Aberrant Cu excretion and
absorption are manifested in the extremely rare genetic diseases Wilson and Menkes, respectively. The
importance of intact Cu homeostatic mechanisms to cell growth control is underscored by the stunted growth
and failure to thrive associated with Cu deficiency in Menkes disease patients and the prevalence of cancer in
patients with hereditary Cu overload in Wilson disease. Further, Cu is neither created nor destroyed, and
therefore low Cu dietary intake may be a contributing factor in impaired wound healing, cardiovascular disease,
and non-alcoholic fatty liver disease. However, the dysregulation of a handful of currently identified Cu-
dependent enzymes does not fully explain the diverse growth phenotypes associated with alterations in Cu
metabolism. Thus, the direct cellular pathways that respond to and or/sense Cu abundance and are integrated
to influence cellular proliferation remain undefined. Recent work by our group uncovered an unexpected link
between the cellular acquisition of Cu and a mitogenic signaling cascade. In response to proliferative signals,
Cu contributes to the amplitude of canonical MAPK signaling through a direct interaction between Cu and the
kinases MEK1 and MEK2. This is the first example of Cu directly regulating the activity of a mammalian kinase
and has exposed a new signaling paradigm that directly connects Cu to signaling pathway components. Based
on our expertise, our group seeks to define the Cu-responsive and -sensing kinase signal transduction
pathways to determine the mechanisms by which Cu contributes to pro-proliferative cellular processes that are
essential to normal proliferation and are sustained during tumorigenesis. To accomplish our goals, we will
utilize a multidisciplinary approach, which includes in vivo mouse models, biochemistry, biophysics, molecular
biology, functional genomics, and pharmacologic interventions. Specifically, we will: i) elucidate the
molecular mechanisms and cellular contexts that underlie Cu integration into the MAPK pathway, ii)
systematically map Cu utilization by pro-proliferative kinase signal transduction pathways, and iii)
leverage our experimental approaches and findings to other transition metals and kinase signaling
networks in normal homeostasis and cancer. Completion of these studies has the potential to establish Cu
availability as an integral component of intracellular communication and elucidate the molecular mechanism
underlying this unique connection. Further, identifying novel Cu-dependent kinases can be therapeutically
exploited to perturb Cu availability for essential signaling pathways in cancer and other diseases settings.
项目概要/摘要
正常生理机能依赖于细胞内信号形式的内在线索的精确协调
转导途径,具有平衡细胞生长和细胞死亡的营养可用性等外在线索。
铜 (Cu) 等过渡金属是受到严格调控的微量营养素,具有结构或催化作用
对正常生理和发育至关重要的蛋白质的辅助因子。铜排泄异常和
吸收分别表现在极其罕见的遗传病威尔逊病和门克斯病中。这
生长发育迟缓强调了完整的铜稳态机制对细胞生长控制的重要性
门克斯病患者的发育迟缓与铜缺乏有关,以及癌症的患病率
威尔逊病遗传性铜超载患者。此外,Cu既不会被创造也不会被破坏,并且
因此,低铜饮食摄入量可能是伤口愈合受损、心血管疾病、
和非酒精性脂肪肝。然而,目前发现的少数铜的失调
依赖酶并不能完全解释与 Cu 变化相关的不同生长表型
代谢。因此,响应和/或感测铜丰度并整合的直接细胞途径
影响细胞增殖的作用仍不清楚。我们小组最近的工作发现了一个意想不到的联系
Cu 的细胞获取和有丝分裂信号级联反应之间的关系。为了响应增殖信号,
Cu 通过 Cu 与
激酶 MEK1 和 MEK2。这是铜直接调节哺乳动物激酶活性的第一个例子
并揭示了一种新的信号传导范式,可直接将 Cu 与信号传导通路组件连接起来。基于
根据我们的专业知识,我们的团队致力于定义 Cu 响应和感应激酶信号转导
确定铜促进细胞增殖过程的机制的途径
对正常增殖至关重要,并在肿瘤发生过程中持续存在。为了实现我们的目标,我们将
利用多学科方法,包括体内小鼠模型、生物化学、生物物理学、分子生物学
生物学、功能基因组学和药理学干预。具体来说,我们将: i) 阐明
Cu 整合到 MAPK 途径的分子机制和细胞环境,ii)
系统地绘制促增殖激酶信号转导途径对铜的利用情况,以及 iii)
将我们的实验方法和发现应用于其他过渡金属和激酶信号传导
正常稳态和癌症中的网络。完成这些研究有可能建立铜
可用性作为细胞内通讯的一个组成部分并阐明分子机制
这种独特联系的基础。此外,鉴定新的铜依赖性激酶可以在治疗上
被用来扰乱癌症和其他疾病环境中重要信号通路的铜的可用性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Donita C Brady其他文献
Donita C Brady的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Donita C Brady', 18)}}的其他基金
Unlocking the Chemical Space of Cancer-Associated Perturbations
解锁癌症相关扰动的化学空间
- 批准号:
10478520 - 财政年份:2022
- 资助金额:
$ 38.69万 - 项目类别:
Unlocking the Chemical Space of Cancer-Associated Perturbations
解锁癌症相关扰动的化学空间
- 批准号:
10704558 - 财政年份:2022
- 资助金额:
$ 38.69万 - 项目类别:
Unlocking the Chemical Space of Cancer-Associated Perturbations
解锁癌症相关扰动的化学空间
- 批准号:
10704558 - 财政年份:2022
- 资助金额:
$ 38.69万 - 项目类别:
Molecular and Cellular Mechanisms of Copper-Dependent Nutrient Signaling and Metabolism
铜依赖性营养信号传导和代谢的分子和细胞机制
- 批准号:
10668539 - 财政年份:2017
- 资助金额:
$ 38.69万 - 项目类别:
Examining the Intersection of Transitional Metals and Kinase Signal Transduction Networks
检查过渡金属和激酶信号转导网络的交叉点
- 批准号:
9978887 - 财政年份:2017
- 资助金额:
$ 38.69万 - 项目类别:
Molecular and Cellular Mechanisms of Copper-Dependent Nutrient Signaling and Metabolism
铜依赖性营养信号传导和代谢的分子和细胞机制
- 批准号:
10406688 - 财政年份:2017
- 资助金额:
$ 38.69万 - 项目类别:
Copper reduction as a novel therapy in BRAF-mutant positive cancers
铜还原作为 BRAF 突变阳性癌症的新疗法
- 批准号:
8565703 - 财政年份:2013
- 资助金额:
$ 38.69万 - 项目类别:
Copper reduction as a novel therapy in BRAF-mutant positive cancers
铜还原作为 BRAF 突变阳性癌症的新疗法
- 批准号:
8737730 - 财政年份:2013
- 资助金额:
$ 38.69万 - 项目类别:
相似国自然基金
crRNA-Cas12a复合体识别与切割靶DNA分子机制的单分子生物物理学研究
- 批准号:31900884
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大肠杆菌K-12对葡萄糖的运动动力学响应及机制研究
- 批准号:11804072
- 批准年份:2018
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
流感病毒感染引起气道液体生物物理学特性改变及相关机制的研究
- 批准号:81670010
- 批准年份:2016
- 资助金额:57.0 万元
- 项目类别:面上项目
与肿瘤相关的DNA甲基化和组蛋白修饰数据的分析与研究
- 批准号:31460234
- 批准年份:2014
- 资助金额:50.0 万元
- 项目类别:地区科学基金项目
人脐动脉内皮细胞纳米低温保存过程的实验研究与模型建立
- 批准号:51276179
- 批准年份:2012
- 资助金额:80.0 万元
- 项目类别:面上项目
相似海外基金
G6PC Enzymology, Structure, Function and Role in the Regulation of Fasting Blood Glucose
G6PC 酶学、结构、功能及其在空腹血糖调节中的作用
- 批准号:
10584866 - 财政年份:2023
- 资助金额:
$ 38.69万 - 项目类别:
Elucidating novel molecular mechanisms of irisin-mediated effects via integrin
通过整合素阐明鸢尾素介导作用的新分子机制
- 批准号:
10464471 - 财政年份:2022
- 资助金额:
$ 38.69万 - 项目类别:
The Structural Basis of TAM Receptor Oligomerizarion and Co-receptor Interactions
TAM 受体寡聚和共受体相互作用的结构基础
- 批准号:
10349217 - 财政年份:2022
- 资助金额:
$ 38.69万 - 项目类别:
The Structural Basis of TAM Receptor Oligomerizarion and Co-receptor Interactions
TAM 受体寡聚和共受体相互作用的结构基础
- 批准号:
10759499 - 财政年份:2022
- 资助金额:
$ 38.69万 - 项目类别:
Elucidating novel molecular mechanisms of irisin-mediated effects via integrin
通过整合素阐明鸢尾素介导作用的新分子机制
- 批准号:
10617263 - 财政年份:2022
- 资助金额:
$ 38.69万 - 项目类别: