Mitochondrial metabolism and the Lon-PDH axis
线粒体代谢和 Lon-PDH 轴
基本信息
- 批准号:10379257
- 负责人:
- 金额:$ 32.17万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-04-01 至 2023-03-31
- 项目状态:已结题
- 来源:
- 关键词:Acetyl Coenzyme AAcetylationAnimal ModelArchitectureAstrocytesAtrophicBrainCarbohydratesCatabolismCellsCellular StressCerebrumCitric Acid CycleComplexDataDefectDietary InterventionDiseaseEnergy MetabolismEnergy-Generating ResourcesEnzymesErythrocytesFailureFatty AcidsFibroblastsFunctional disorderGatekeepingGenerationsGenesGlucoseGlutamineGlycolysisGlycolysis InhibitionGoalsHeart DiseasesHumanImpairmentInvestigationKetone BodiesKnowledgeLeucineLinkMalignant NeoplasmsMeasuresMediatingMedium chain fatty acidMetabolicMetabolismMissense MutationMitochondriaModificationMolecularMolecular MachinesMutationNerve DegenerationNeurodegenerative DisordersNeurologicNeurologic DysfunctionsNeuronsOutcomeOxidative PhosphorylationOxidesPDH kinaseParentsPathogenicityPathway interactionsPatientsPharmacologyPhosphorylationPositioning AttributePost-Translational Protein ProcessingProductionProlineProteinsProteolysisProteomicsPyruvatePyruvate Dehydrogenase (Lipoamide)-PhosphatasePyruvate Dehydrogenase ComplexPyruvate Dehydrogenase E1ReactionRegulationSiblingsSkinStreamTestingTranscriptVariantWorkamino acid metabolismbrain celldihydrolipoamide dehydrogenasedihydrolipoyllysine-residue acetyltransferaseendopeptidase Laexperimental studyfatty acid oxidationhigh throughput screeninginduced pluripotent stem cellintermolecular interactionmetabolomicsmitochondrial metabolismmutantnoveloxidationproteostasispyruvate dehydrogenaseresponsestem cell differentiationtherapeutic proteinuptake
项目摘要
The human Lon protease is a master regulator of mitochondrial proteostasis, which is essential for
regulating mitochondrial energy metabolism and mitigating cell stress. We recently identified a novel
pathogenic variant in the LONP1 gene encoding Lon, in two siblings with profound neurologic
impairment, cerebral and cerebellar atrophy, in which proline at position 761 was replaced by leucine
(Lon-P761L). Primary skin fibroblasts from these siblings, showed that the activity of pyruvate
dehydrogenase (PDH) was substantially reduced. PDH deficiency was caused by the failure of Lon-P761L to degrade the phosphorylated E1a subunit of PDH, which accumulates and inhibits PDH
activity. PDH is the central gatekeeper linking glycolysis to the tricarboxylic acid (TCA) cycle, and is
also a key regulatory node for glucose and fatty acid catabolism. Our long term goal is to elucidate why
homozygous Lon-P761L expression causes severe neurologic dysfunction and neurodegeneration.
Glucose is the brain’s principal source of energy. Neurons generate ATP almost exclusively by glucose
oxidization, thus fully functional PDH activity is crucial. Astrocytes by contrast, have broader metabolic
capacity and supply neurons with lactate, glutamine and ketone bodies, which are used to form acetyl
CoA and TCA cycle intermediates required for glucose oxidation. We hypothesize that wild type Lon
regulates the architecture and activities of the PDH complex, and modulates upstream and downstream
effectors, to calibrate mitochondrial metabolism and energetics. In this project, we will employ patient-and parent-derived fibroblasts, and also fibroblasts that have been reprogrammed to generate induced
pluripotent stem cells (iPSCs). These iPSCs will be differentiated into neurons and astrocytes. Using
the patient- and parent- derived fibroblasts, Aim 1 will test the hypothesis that Lon-mediated degradation
regulates the architecture and activity of the PDH complex. Aim 2 will identify the up- and down-stream
modulators of the Lon-PDH axis, which are altered in cells expressing wild type Lon versus Lon-P761L.
In Aim 3, we will investigate the regulation of PDH by Lon in iPSCs differentiated into neurons and
astrocytes. Our investigation will establish new molecular mechanisms for the Lon-dependent
regulation of PDH. The knowledge gained will also help to identify potential therapeutic protein targets
(e.g. PDK, PDP, Lon), pharmacologic and dietary interventions for increasing PDH activity and/or for
treating PDH deficiency associated with Lon dysfunction. These outcomes have a broader impact for
understanding how PDH activity and mitochondrial metabolism can be calibrated in both rare and more
common disorders such as heart disease, cancer and neurodegeneration.
人类 Lon 蛋白酶是线粒体蛋白质稳态的主要调节因子,对于维持线粒体功能至关重要。
我们最近发现了一种新的方法来调节线粒体能量代谢和减轻细胞应激。
两个患有严重神经系统疾病的兄弟姐妹中编码 Lon 的 LONP1 基因的致病性变异
损伤、大脑和小脑萎缩,其中 761 位脯氨酸被亮氨酸取代
(Lon-P761L) 来自这些兄弟姐妹的原代皮肤成纤维细胞显示丙酮酸的活性。
脱氢酶 (PDH) 显着降低是由于 Lon-P761L 未能降解 PDH 的磷酸化 E1a 亚基,从而积累并抑制 PDH。
PDH 是将糖酵解与三羧酸 (TCA) 循环联系起来的中心看门人。
也是葡萄糖和脂肪酸分解代谢的关键调节节点。我们的长期目标是阐明原因。
纯合 Lon-P761L 表达会导致严重的神经功能障碍和神经变性。
葡萄糖是大脑的主要能量来源,神经元几乎完全由葡萄糖产生 ATP。
相比之下,星形胶质细胞具有更广泛的氧化作用,因此功能齐全的 PDH 活性至关重要。
能力并为神经元提供乳酸、谷氨酰胺和酮体,这些物质用于形成乙酰基
葡萄糖氧化所需的 CoA 和 TCA 循环中间体,我们勇敢地使用野生型 Lon。
调节 PDH 复合体的结构和活动,并调节上游和下游
在这个项目中,我们将使用患者和亲本来源的成纤维细胞,以及经过重新编程以产生诱导的成纤维细胞。
多能干细胞 (iPSC) 将分化为神经元和星形胶质细胞。
患者和亲本来源的成纤维细胞,目标 1 将检验 Lon 介导的降解的假设
调节 PDH 复合体的结构和活性 目标 2 将识别上游和下游。
Lon-PDH 轴的调节剂,与表达野生型 Lon 的细胞相比,表达 Lon-P761L 的细胞中的调节剂发生改变。
在目标 3 中,我们将研究分化为神经元和神经元的 iPSC 中 Lon 对 PDH 的调节。
我们的研究将为 Lon 依赖性建立新的分子机制。
获得的知识也将有助于识别潜在的治疗蛋白靶点。
(例如 PDK、PDP、Lon)、药物和饮食干预以增加 PDH 活性和/或
治疗与 Lon 功能障碍相关的 PDH 缺乏症这些结果对患者具有更广泛的影响。
了解如何在罕见和更多情况下校准 PDH 活性和线粒体代谢
常见疾病,如心脏病、癌症和神经退行性疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
CAROLYN K SUZUKI其他文献
CAROLYN K SUZUKI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('CAROLYN K SUZUKI', 18)}}的其他基金
Mitochondrial metabolism and the Lon-PDH axis
线粒体代谢和 Lon-PDH 轴
- 批准号:
10728404 - 财政年份:2020
- 资助金额:
$ 32.17万 - 项目类别:
Mitochondrial metabolism and the Lon-PDH axis
线粒体代谢和 Lon-PDH 轴
- 批准号:
10620384 - 财政年份:2020
- 资助金额:
$ 32.17万 - 项目类别:
Mitochondrial metabolism and the Lon-PDH axis
线粒体代谢和 Lon-PDH 轴
- 批准号:
10594025 - 财政年份:2020
- 资助金额:
$ 32.17万 - 项目类别:
Mitochondrial metabolism and the Lon-PDH axis
线粒体代谢和 Lon-PDH 轴
- 批准号:
10594025 - 财政年份:2020
- 资助金额:
$ 32.17万 - 项目类别:
Regulating mtDNA and mtRNA dynamics by the mitochondrial AAA+ Lon protease
通过线粒体 AAA Lon 蛋白酶调节 mtDNA 和 mtRNA 动力学
- 批准号:
9187845 - 财政年份:2015
- 资助金额:
$ 32.17万 - 项目类别:
Mitochondrial chaperones mortalin and Tid1 in protein degradation
蛋白质降解中的线粒体伴侣 mortalin 和 Tid1
- 批准号:
8707617 - 财政年份:2011
- 资助金额:
$ 32.17万 - 项目类别:
Mitochondrial chaperones mortalin and Tid1 in protein degradation
蛋白质降解中的线粒体伴侣 mortalin 和 Tid1
- 批准号:
8192595 - 财政年份:2011
- 资助金额:
$ 32.17万 - 项目类别:
Mitochondrial chaperones mortalin and Tid1 in protein degradation
蛋白质降解中的线粒体伴侣 mortalin 和 Tid1
- 批准号:
8311645 - 财政年份:2011
- 资助金额:
$ 32.17万 - 项目类别:
High throughput screening assays to identify small molecules that target the ClpX
通过高通量筛选分析来识别靶向 ClpX 的小分子
- 批准号:
7994954 - 财政年份:2010
- 资助金额:
$ 32.17万 - 项目类别:
相似国自然基金
高尔基体结构蛋白ACBD3介导的微管乙酰化异常在GJB2突变相关遗传性耳聋中的机制及干预
- 批准号:81771003
- 批准年份:2017
- 资助金额:56.0 万元
- 项目类别:面上项目
HDAC2介导组蛋白乙酰化修饰调控GDM胰岛素抵抗的机制研究
- 批准号:81571456
- 批准年份:2015
- 资助金额:60.0 万元
- 项目类别:面上项目
NR2B基因组蛋白乙酰化调控与酒依赖及戒断的关系研究
- 批准号:81471351
- 批准年份:2014
- 资助金额:75.0 万元
- 项目类别:面上项目
组蛋白去乙酰化酶对哮喘表观调控的分子机制
- 批准号:81300024
- 批准年份:2013
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
HDAC6介导的乙酰化表观遗传修饰在PCOS胰岛素抵抗中的作用机制
- 批准号:81200420
- 批准年份:2012
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Mechanisms of GM-CSF-mediated metabolic regulation of monocyte function for control of pulmonary infection
GM-CSF介导的单核细胞功能代谢调节控制肺部感染的机制
- 批准号:
10877377 - 财政年份:2023
- 资助金额:
$ 32.17万 - 项目类别:
Novel roles of PDK2 in heart failure: Regulation of mitochondrial nuclear crosstalk via metabolic regulation and histone acetylation
PDK2 在心力衰竭中的新作用:通过代谢调节和组蛋白乙酰化调节线粒体核串扰
- 批准号:
10635599 - 财政年份:2023
- 资助金额:
$ 32.17万 - 项目类别:
Epigenetic-metabolic aspects of alcohol use disorder and early developmental alcohol exposure
酒精使用障碍和早期发育酒精暴露的表观遗传代谢方面
- 批准号:
10745787 - 财政年份:2023
- 资助金额:
$ 32.17万 - 项目类别: