Carrier Shape Matters: Filomicelles, Long-circulation, and the EPR effect
载体形状很重要:丝状胶束、长循环和 EPR 效应
基本信息
- 批准号:7642477
- 负责人:
- 金额:$ 34.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-09-15 至 2011-03-31
- 项目状态:已结题
- 来源:
- 关键词:AddressApoptosisApoptosis PromoterArea Under CurveBenchmarkingBindingBiocompatible MaterialsBiodistributionBiologicalBiological AssayBiological ModelsBloodBlood CirculationBlood capillariesBuffersCaliberCancerousCardiac MyocytesCell CommunicationCell Culture TechniquesCellsCerealsChargeChemistryClinicalComplementComplement ActivationCryopreservationCytolysisDevicesDoseDoxorubicinDrug Delivery SystemsDrug KineticsDyesExhibitsFluorescenceGelHigh Pressure Liquid ChromatographyHumanImageIn VitroInfarctionInjection of therapeutic agentKineticsLabelLeadLengthLigandsLiposomesLiteratureLiverLung NeoplasmsMalignant neoplasm of lungMapsMeasuresMethodsMicellesMitoticModelingMonitorMorphologyMuscleMyocardial InfarctionMyocardiumNude MiceOxidation-ReductionPaclitaxelPartition CoefficientPathway interactionsPeptidesPhagocytesPharmaceutical PreparationsPolyestersPolymersPropertyProteinsRadialRattusReceptor CellReportingResearch PersonnelRodentSeriesShapesSolid NeoplasmSpleenSterilitySurfaceSystemTestingTimeTissuesToxic effectTransferrinVesicleWaterWhole BloodWorkXenograft Modelbasecancer cellcapillarycomputer designcopolymerdesigndi-block copolymerdrug testingflexibilityfluorescence imagingin vivointravenous injectionkillingsmacrophagemimeticsmolecular dynamicsmonomermortalitymouse modelnanonanocarriernanoparticlenovelparticlepolymerizationprogramsreceptorself assemblysimulationtherapeutic developmenttraffickingtumoruptake
项目摘要
DESCRIPTION (provided by applicant): The ultimate question to be addressed here is what range of filamentous shapes & flexibilities are 'nano' in the circulation and in permeating tumors or other porous tissues? Our worm-like 'Filomicelles' are made from amphiphilic PEG-based polymers similar to those in clinical use and similar to those used to make polymer vesicles, but our cylindrical Filomicelles already appear to possess surprisingly distinct and advantageous pharmacokinetic properties. While the biomaterials literature currently suggests that a particle radius much greater than approximately 100-200 nm leads to rapid clearance by phagocytes of the liver and spleen, we find that Filomicelles many microns long can "worm" through the capillaries and circulate in vivo for a week or more - longer than any synthetic carrier yet reported. Mapping out the limits of this long circulation - length, diameter, flexibility, surface charge, drug retention, and ligand-targeting - is our pen-ultimate Aim in vivo. Long circulating Filomicelles should greatly increase the 'Area Under the Curve' for drug delivery, and we indeed already find that a single injection of PEG-polyester, 8 mu m-long Filomicelles loaded with the hydrophobic anti-mitotic drug taxol shrinks a solid tumor by almost half ... And this is found at a 'TAX' dose (in mg/kg) which is ineffective as free drug. Filomicelles also appear more potent than a single injection of polymer vesicles loaded with both TAX and Doxorubicin. Since our two types of polymer-based carriers are made from copolymers that differ in PEG fraction by only 5-10%, we can more directly compare effects of carrier morphology in delivery. For either system however, we do not yet know how much TAX is (i) released directly in the circulation, (ii) released gradually with sphere micelles from degrading carriers in circulation, or (iii) released from Filomicelles or vesicles that have permeated the tumor. Our ultimate Aim here is to address how the Filomicelles (vs polymer vesicles) might take advantage of the Enhanced Permeation and Retention ('EPR') effect in passive delivery to tumors - specifically lung tumors (with 80- 90% mortality in humans) in a xenograft model. The generality of the EPR effect with these carriers will be examined in limited studies of their permeation into non-cancerous 'porous' tissues such as damaged myocardium and dystrophic muscle. In parallel with the in vivo studies above, we propose to further the designs (with atomistic simulation), make, load, characterize (stability, release, etc.), and target novel block copolymer carriers. Targeted worm-like Filomicelles are already seen to cooperatively zip up on surfaces displaying suitable receptors, at least with model systems in vitro. Subsequent internalization by the cell can then lead to delivery of a large amount of drug all at once from a single micelle - enough to kill a single cell, in principle. In our initial Aims we seek to test this hypothesis of potency by first clarifying precepts of block copolymer self-assembly and shape stability, and then assessing copolymer degradation, cellular trafficking and transport. We propose a focused development of therapeutic ligands, including targeted apoptosis-inducers, as we ultimately seek a wider range of control and targeting (but passive first!) of copolymer assemblies for in vivo studies.
描述(由申请人提供):这里要解决的最终问题是,在循环系统和渗透性肿瘤或其他多孔组织中,什么范围的丝状形状和灵活性是“纳米”的?我们的蠕虫状“丝状胶束”由两亲性 PEG 聚合物制成,类似于临床使用的聚合物以及用于制造聚合物囊泡的聚合物,但我们的圆柱形丝状胶束似乎已经具有令人惊讶的独特和有利的药代动力学特性。虽然生物材料文献目前表明,远大于约 100-200 nm 的颗粒半径会导致肝脏和脾脏的吞噬细胞快速清除,但我们发现数微米长的丝状胶束可以“蠕动”通过毛细血管并在体内循环一段时间。一周或更长时间——比迄今为止报道的任何合成载体都要长。绘制出这种长循环的极限——长度、直径、灵活性、表面电荷、药物保留和配体靶向——是我们体内的最终目标。长循环丝状胶束应该大大增加药物输送的“曲线下面积”,我们确实已经发现,单次注射 PEG-聚酯、8μm长的丝状胶束,负载疏水性抗有丝分裂药物紫杉醇,可以缩小实体瘤几乎一半......这是在“TAX”剂量(以毫克/千克为单位)下发现的,作为游离药物是无效的。丝状胶束似乎也比单次注射负载 TAX 和阿霉素的聚合物囊泡更有效。由于我们的两种聚合物载体由 PEG 含量仅相差 5-10% 的共聚物制成,因此我们可以更直接地比较载体形态在递送中的影响。然而,对于这两种系统,我们尚不知道有多少 TAX 是(i)直接在循环中释放的,(ii)与循环中降解载体中的球形胶束一起逐渐释放的,或(iii)从渗透到循环中的丝状胶束或囊泡中释放的。瘤。我们的最终目标是解决丝状胶束(相对于聚合物囊泡)如何利用增强渗透和保留(“EPR”)效应被动递送至肿瘤——特别是肺肿瘤(人类死亡率为 80-90%)。异种移植模型。这些载体的 EPR 效应的普遍性将在其渗透到非癌性“多孔”组织(例如受损心肌和营养不良的肌肉)的有限研究中进行检验。与上述体内研究并行,我们建议进一步设计(通过原子模拟)、制造、负载、表征(稳定性、释放等)和靶向新型嵌段共聚物载体。人们已经发现,有针对性的蠕虫状丝状胶束可以在显示合适受体的表面上协同收缩,至少在体外模型系统中是这样。随后细胞的内化可以导致从单个胶束一次性释放大量药物——原则上足以杀死单个细胞。在我们最初的目标中,我们试图通过首先阐明嵌段共聚物自组装和形状稳定性的规则,然后评估共聚物降解、细胞运输和运输来测试这种效力假设。我们建议重点开发治疗配体,包括靶向凋亡诱导剂,因为我们最终寻求更广泛的控制和靶向(但首先是被动!)共聚物组装体以进行体内研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dennis E. Discher其他文献
Dennis E. Discher的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dennis E. Discher', 18)}}的其他基金
Mechanics of Cells & Tissues impact Chromosome Instability & Phagocytic Interactions
细胞力学
- 批准号:
10626283 - 财政年份:2023
- 资助金额:
$ 34.28万 - 项目类别:
Live cell reporters of genetic changes in stiff vs soft surroundings - Causes & Consequences
僵硬与柔软环境中遗传变化的活细胞报告 - 原因
- 批准号:
10092733 - 财政年份:2021
- 资助金额:
$ 34.28万 - 项目类别:
Live cell reporters of genetic changes in stiff vs soft surroundings - Causes & Consequences
僵硬与柔软环境中遗传变化的活细胞报告 - 原因
- 批准号:
10594852 - 财政年份:2021
- 资助金额:
$ 34.28万 - 项目类别:
Live cell reporters of genetic changes in stiff vs soft surroundings - Causes & Consequences
僵硬与柔软环境中遗传变化的活细胞报告 - 原因
- 批准号:
10373929 - 财政年份:2021
- 资助金额:
$ 34.28万 - 项目类别:
Live cell reporters of genetic changes in stiff vs soft surroundings - Causes & Consequences
僵硬与柔软环境中遗传变化的活细胞报告 - 原因
- 批准号:
10608069 - 财政年份:2021
- 资助金额:
$ 34.28万 - 项目类别:
Live cell reporters of genetic changes in stiff vs soft surroundings - Causes & Consequences
僵硬与柔软环境中遗传变化的活细胞报告 - 原因
- 批准号:
10737802 - 财政年份:2021
- 资助金额:
$ 34.28万 - 项目类别:
Nuclear Mechanics varies with Tissue Mechanics & Regulates Cytoskeleton
核力学随组织力学而变化
- 批准号:
8928873 - 财政年份:2015
- 资助金额:
$ 34.28万 - 项目类别:
Liver Cancer: pre-Malignant Stiffening, Membrane Transduction, & Nuclear Rheology
肝癌:癌前硬化、膜转导、
- 批准号:
9091502 - 财政年份:2015
- 资助金额:
$ 34.28万 - 项目类别:
相似国自然基金
STAB1调控Fas/FasL介导牦牛胎盘滋养层细胞凋亡及胎盘炎症性流产的作用与机制研究
- 批准号:32360836
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
萱草花细胞程序性凋亡生物钟调控机制研究
- 批准号:32371943
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于VEGFR2/Ca2+信号通路研究可视化针刀“调筋治骨”减轻颈椎病颈肌细胞凋亡的分子机制
- 批准号:82360940
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
STING/ALG-2复合物的结构及其在STING激活诱导的T细胞凋亡中的功能
- 批准号:32371265
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
SIRT2/Annexin A2/autophagy通路形成的分子机制及其在HCC细胞失巢凋亡抵抗中的作用研究
- 批准号:32300626
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
The Role of Glycosyl Ceramides in Heart Failure and Recovery
糖基神经酰胺在心力衰竭和恢复中的作用
- 批准号:
10644874 - 财政年份:2023
- 资助金额:
$ 34.28万 - 项目类别:
The transcriptional control of vascular calcification in disease
疾病中血管钙化的转录控制
- 批准号:
10647475 - 财政年份:2023
- 资助金额:
$ 34.28万 - 项目类别:
Mechanisms Regulating Lung Injury and Early Lung Fibrosis
肺损伤和早期肺纤维化的调节机制
- 批准号:
10627593 - 财政年份:2023
- 资助金额:
$ 34.28万 - 项目类别:
Using natural killer cells to prevent breast cancer metastases
使用自然杀伤细胞预防乳腺癌转移
- 批准号:
10591362 - 财政年份:2023
- 资助金额:
$ 34.28万 - 项目类别:
Genetic studies linking LSP1 function in T cells to Inflammatory Bowel Disease
T 细胞中 LSP1 功能与炎症性肠病相关的遗传学研究
- 批准号:
10636526 - 财政年份:2023
- 资助金额:
$ 34.28万 - 项目类别: