Carbon Nanotube Fibers as Implantable Neural Electrodes
碳纳米管纤维作为植入式神经电极
基本信息
- 批准号:7647953
- 负责人:
- 金额:$ 34.62万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-09-01 至 2011-07-31
- 项目状态:已结题
- 来源:
- 关键词:AdhesionsAdhesivesAffinityAreaAstrocytesAxonBindingBiocompatibleBiocompatible MaterialsBiosensorBrainCarbonCarbon NanotubesCellsCharacteristicsChronicCicatrixClinicalCoagulation ProcessCollaborationsComputersCouplingDataDepositionDevicesElectrodesElectrophysiology (science)EnvironmentExtracellular MatrixFiberGliosisGoldGrantGrowthGrowth FactorHairHippocampus (Brain)HybridsImplantImplanted ElectrodesIn VitroInfiltrationInflammationInjuryLeadLiteratureMechanicsMetalsMicroelectrodesMicrofluidicsModelingModificationNanotechnologyNervous system structureNeuraxisNeurobiologyNeurogliaNeuronsNew JerseyPathway interactionsPeripheralPolymersPropertyProsthesisPublishingResearchResearch InstituteSchwann CellsScientistSensorySignal PathwaySignal TransductionSiliconSliceSolutionsSpinal CordSpinal GangliaSpinal cord injurySprague-Dawley RatsStructureSubstrate InteractionSurfaceTechniquesTestingTextilesTissue EngineeringTissuesUnited States National Institutes of HealthUniversitiesaxon growthbasebiomaterial compatibilitybiomaterial interfacecarbon fibercell behaviordesignflexibilitygranule cellimplantationimprovedin vivoinjury and repairmonitoring devicemultidisciplinarynanocompositenanofibernanomaterialsnanostructurednerve injurynervous system disorderneural facilitationneurite growthneurophysiologynovelphysical propertyprogramsrelating to nervous systemresearch studyscaffoldsuccess
项目摘要
DESCRIPTION (provided by applicant): Sensory and stimulatory prosthetic devices to treat spinal cord injuries and other nervous system diseases require implantation of electrically conductive interfaces between neural tissues and microelectrodes. Currently available metal/silicon-based devices are not stable over the long term, mostly due to gliosis and inflammation. This interdisciplinary R01 project focuses on the design of a novel class of nanomaterials for neurobiological applications based on carbon nanotube fibers (CNF). Fabricated from single wall carbon nanotubes (SWNT) with a polymer binder in the form of flexible "hair-like" fibers, CNF combine unique properties of porous nanostructured scaffolds, conductive microwires and electrodes, permeable microfluidic conduits, and high area supports for bioactive agents and biocatalysts. Based on our preliminary results and analysis of published data, we anticipate that CNF can be modified to provide an intimate nerve cell adhesive substrate with increased conductivity and with reduced affinity for glial cells. CNF can be formed into a bundle of individually addressable fibers/wires connected to an external chip or computer controller for specific stimulation/recording of neural activity. A multidisciplinary team of nanotechnology, biomaterials and neurobiological scientists will: 1) optimize fabrication of functionalized CNF for neural implants and electrodes; 2) perform surface modification and test CNF with respect to biocompatibility with neural and glial cells in vitro; 3) assess electrophysiological features of CNF ex vivo and demonstrate long term compatibility and integration of CNF in the central nervous system in vivo. Our central aim is to demonstrate that suitably modified and functionalized CNF can provide a unique environment for neural tissue engineering and, especially, for generating chronically implantable interfaces. In the short term, our research program will yield a new biocompatible platform for chronic neuroprosthetic implants and electrodes. In the long term, we will elaborate a strategy to design "artificial axons" from functionalized SWCN nanocomposite fibers. The success of the proposed project will have a broad impact on the progress of clinical implantable neural devices for monitoring and facilitation of neural activity and growth, and, ultimately, for reconnecting brain signal pathways after neural injury and repairing damage to the nervous system.
描述(由申请人提供):治疗脊髓损伤和其他神经系统疾病的感觉和刺激性假体装置需要在神经组织和微电极之间植入电导性接口。目前可用的金属/硅设备在长期内不稳定,主要是由于神经胶质和炎症。这个跨学科的R01项目着重于基于碳纳米管纤维(CNF)的神经生物学应用的新型纳米材料的设计。 CNF由单壁碳纳米管(SWNT)和聚合物粘合剂形式制成,CNF结合了多孔纳米结构脚手架的独特性能,导电微管和电极,可渗透性的微流体导管,以及对生物活性剂和生物活性型的高面积支持。基于我们对已发布数据的初步结果和分析,我们预计CNF可以修改,以提供私密的神经细胞粘合剂底物,具有增加的电导率,并且对神经胶质细胞的亲和力降低。可以将CNF形成到连接到外部芯片或计算机控制器的单独寻址纤维/电线的一组,以进行特定的刺激/记录神经活动。纳米技术,生物材料和神经生物学科学家的多学科团队将:1)优化为神经植入物和电极的功能化CNF的制造; 2)在体外对神经和神经胶质细胞的生物相容性进行表面修饰并测试CNF; 3)评估CNF离体的电生理特征,并证明了体内中枢神经系统中CNF的长期兼容性和整合。我们的中心目的是证明适当修改和功能化的CNF可以为神经组织工程提供独特的环境,尤其是生成长期植入的界面。在短期内,我们的研究计划将为慢性神经假体植入物和电极提供新的生物相容性平台。从长远来看,我们将制定一种从功能化的SWCN纳米复合纤维设计“人造轴突”的策略。拟议项目的成功将对临床植入神经设备的进展产生广泛影响,以监测和促进神经活动和生长,并最终在神经损伤和修复神经系统损害后重新连接脑信号途径。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Biohybrid Carbon Nanotube/Agarose Fibers for Neural Tissue Engineering.
- DOI:10.1002/adfm.201002429
- 发表时间:2011-07-22
- 期刊:
- 影响因子:19
- 作者:Lewitus, Dan Y.;Landers, John;Branch, Jonathan R.;Smith, Karen L.;Callegari, Gerardo;Kohn, Joachim;Neimark, Alexander V.
- 通讯作者:Neimark, Alexander V.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DOUGLAS H ADAMSON其他文献
DOUGLAS H ADAMSON的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DOUGLAS H ADAMSON', 18)}}的其他基金
Carbon Nanotube Fibers as Implantable Neural Electrodes
碳纳米管纤维作为植入式神经电极
- 批准号:
7192681 - 财政年份:2007
- 资助金额:
$ 34.62万 - 项目类别:
Carbon Nanotube Fibers as Implantable Neural Electrodes
碳纳米管纤维作为植入式神经电极
- 批准号:
7477226 - 财政年份:2007
- 资助金额:
$ 34.62万 - 项目类别:
相似国自然基金
基于短肽诱导蚕丝蛋白组装的可控粘附生物粘合剂的制备及粘附性能研究
- 批准号:52303272
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
氮杂环丙烷基聚多硫化物可逆粘合剂的分子设计与制备
- 批准号:22378080
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
多酚功能化壳聚糖基组织粘合剂构建及其能量耗散机制探究
- 批准号:82302389
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
负载MUR仿生脂质体粘合剂靶向调控荷菌巨噬细胞IFI204/ARMCX3/Caspase-11焦亡抑制创伤性骨髓炎发生的机制研究
- 批准号:82372421
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
多尺度低表面能粘合剂的构筑及织物基传感器稳定性提升机制研究
- 批准号:22302110
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Phosphatase-dependent regulation of desmosome intercellular junctions
桥粒细胞间连接的磷酸酶依赖性调节
- 批准号:
10677182 - 财政年份:2023
- 资助金额:
$ 34.62万 - 项目类别:
Identifying Mechanisms Involved in Hydroxyurea-Mediated Reduction in Vaso-occlusive Adhesive Events in Sickle Cell Disease
确定羟基脲介导的镰状细胞病血管闭塞性粘附事件减少机制
- 批准号:
10724590 - 财政年份:2023
- 资助金额:
$ 34.62万 - 项目类别:
Characterization of the lens fiber cell tricellular junctional complex and its dependency on delta-catenin
晶状体纤维细胞三细胞连接复合体的表征及其对δ-连环蛋白的依赖性
- 批准号:
10738883 - 财政年份:2023
- 资助金额:
$ 34.62万 - 项目类别:
Novel nanoparticles to stimulate therapeutic angiogenesis in peripheral arterial disease
刺激外周动脉疾病治疗性血管生成的新型纳米颗粒
- 批准号:
10756875 - 财政年份:2022
- 资助金额:
$ 34.62万 - 项目类别:
Allosteric adhesins of enterobacterial pathogens
肠杆菌病原体的变构粘附素
- 批准号:
10512013 - 财政年份:2022
- 资助金额:
$ 34.62万 - 项目类别: