Neural circuit control of sighing
叹气的神经回路控制
基本信息
- 批准号:10363899
- 负责人:
- 金额:$ 38.23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-01-15 至 2025-12-31
- 项目状态:未结题
- 来源:
- 关键词:AblationAffectAlveolarAmericanApneaArousalAtelectasisBiological AssayBrainBrain StemBreathingCalciumCarbon DioxideCause of DeathClinicalDiagnosisDiseaseFailureFoundationsFrequenciesFunctional ImagingFunctional disorderGasesGastrin releasing peptideGenerationsGeneticGoalsHomeostasisHypothalamic structureHypoxiaKnowledgeLaboratoriesLeadLeigh DiseaseLifeLungModalityMonitorMusNeurologicNeuronsNeuropeptidesOutcomeOxygenPathologicPathway interactionsPatientsPatternPersonsPharmacologic SubstancePharmacological TreatmentPharmacologyPhysiologicalProcessRespiration DisordersRespiratory distressRett SyndromeRoleSleepSleep Apnea SyndromesStimulusSudden infant death syndromeTestingWorkexperimental studyhypocretinimaging modalityimprovedin vivoin vivo imaginginsightmouse geneticsneural circuitneuromechanismneuromedin Bneuroregulationnovelnovel strategiesopioid mortalityoptogeneticspreventpulmonary functionreceptorrelating to nervous systemrespiratoryresponse
项目摘要
Proposal Summary
Breathing is a vital process that maintains oxygen and carbon dioxide homeostasis, and its dysregulation leads
to various and often devastating conditions. Effective pharmaceutical treatments for patients in respiratory
abnormalities are severely limited due to our lack of knowledge on the neurological mechanisms controlling
breathing and how they may go awry under pathological conditions. Sighs are long, deep breaths with a
bimodal inspiration that occur spontaneously every several minutes to reverse the alveolar collapse
(atelectasis) and maintain normal lung function. Sighing has also been implicated in various pathological
conditions, including sudden infant death syndrome. The long-term goal of my laboratory is to understand the
neural control of breathing patterns, including sighing, and how it fails in pathological conditions. In this project,
we propose to understand how the central control mechanism of sighing is regulated by physiological sigh-
inducing stimuli, including hypoxia and sleep-wake states. We recently identified that the mouse brainstem
neurons expressing neuromedin B (Nmb) or gastrin releasing peptide (Grp) comprise the core components of
a dedicated sigh control circuit. Leveraging this endogenous pathway and circuit underlying sighing, we will
integrate mouse genetics, optogenetics and chemogenetics, genetic ablation, neural circuit tracing, functional
imaging, and physiological assays, to genetically and functionally dissect the neural control circuits in mouse in
vivo experiments. In Aim 1, we will use optogenetics, genetic ablation, and circuit tracing to define the neural
circuit underlies hypoxia-induced sighing. In Aim 2, we will examine the role of input neurons to the sigh circuit
in regulating sighing as a function of sleep-wake state. In Aim 3, we will monitor the calcium activity of the sigh
control neurons during basal and induced sighs in order to understand the neuronal basis underlying the
generation of sighing and other breathing patterns in physiological conditions. The expected outcomes are to
lead to a better understanding of the function of the sigh control circuits, and provide an improved foundation
for understanding how different breathing patterns are controlled and how physiological states in turn dictate
switches in the breathing patterns. These outcomes will have an important impact by revealing the mechanistic
basis for the pathophysiology of breathing disorders and identifying targeted pharmacological approaches for
new treatment modalities in a variety of clinical scenarios.
提案摘要
呼吸是维持氧气和二氧化碳稳态的重要过程,其失调会导致
各种且往往是毁灭性的情况。呼吸系统疾病患者的有效药物治疗
由于我们缺乏对控制神经机制的了解,异常现象受到严重限制。
呼吸以及它们在病理条件下如何可能出错。叹息是长而深的呼吸,带有一种
双峰吸气每隔几分钟自发发生一次,以逆转肺泡塌陷
(肺不张)并维持正常的肺功能。叹息也与多种病理有关
情况,包括婴儿猝死综合症。我实验室的长期目标是了解
呼吸模式的神经控制,包括叹气,以及它在病理条件下如何失效。在这个项目中,
我们建议了解叹息的中枢控制机制是如何受生理叹息调节的
诱导刺激,包括缺氧和睡眠-觉醒状态。我们最近发现小鼠脑干
表达神经调节素 B (Nmb) 或胃泌素释放肽 (Grp) 的神经元包含
专用叹气控制电路。利用这种叹息的内源性通路和回路,我们将
整合小鼠遗传学、光遗传学和化学遗传学、基因消融、神经回路追踪、功能
成像和生理测定,从基因和功能上剖析小鼠的神经控制回路
体内实验。在目标 1 中,我们将使用光遗传学、基因消融和电路追踪来定义神经网络
电路是缺氧引起的叹息的基础。在目标 2 中,我们将研究输入神经元对叹气电路的作用
调节叹息作为睡眠-觉醒状态的功能。在目标 3 中,我们将监测叹息的钙活性
在基础叹息和诱导叹息期间控制神经元,以了解叹息背后的神经元基础
在生理条件下产生叹息和其他呼吸模式。预期结果是
更好地理解叹气控制电路的功能,并提供更好的基础
了解如何控制不同的呼吸模式以及生理状态如何决定
改变呼吸模式。这些结果将通过揭示机制产生重要影响
呼吸障碍的病理生理学基础并确定有针对性的药理学方法
各种临床情况下的新治疗方式。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peng Li其他文献
The Generation of (n, n(n-1), n-1) Permutation Group Codes for Communication Systems
通信系统(n,n(n-1),n-1)置换群码的生成
- DOI:
10.1109/tcomm.2019.2902149 - 发表时间:
2019 - 期刊:
- 影响因子:8.3
- 作者:
Peng Li - 通讯作者:
Peng Li
Peng Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peng Li', 18)}}的其他基金
Dissecting neural circuits for breathing patterns
剖析呼吸模式的神经回路
- 批准号:
10696152 - 财政年份:2021
- 资助金额:
$ 38.23万 - 项目类别:
Dissecting neural circuits for breathing patterns
剖析呼吸模式的神经回路
- 批准号:
10319313 - 财政年份:2021
- 资助金额:
$ 38.23万 - 项目类别:
Development of VSSI-probe technology for in situ probing biological systems using mass spectrometry
开发使用质谱法原位探测生物系统的 VSSI 探针技术
- 批准号:
10687118 - 财政年份:2019
- 资助金额:
$ 38.23万 - 项目类别:
Development of VSSI-probe technology for in situ probing biological systems using mass spectrometry
开发使用质谱法原位探测生物系统的 VSSI 探针技术
- 批准号:
10468735 - 财政年份:2019
- 资助金额:
$ 38.23万 - 项目类别:
Development of VSSI-probe technology for in situ probing biological systems using mass spectrometry
开发使用质谱法原位探测生物系统的 VSSI 探针技术
- 批准号:
10021677 - 财政年份:2019
- 资助金额:
$ 38.23万 - 项目类别:
相似国自然基金
MUC1与BMP4相互作用影响肺泡再生和肺气肿发生发展的机制研究
- 批准号:82330002
- 批准年份:2023
- 资助金额:220 万元
- 项目类别:重点项目
Cdyl基因通过Cks1b对小鼠肺泡II型上皮细胞增殖影响及其机制研究
- 批准号:82300001
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
PPAR-γ介导肺泡巨噬细胞表型转变的分子机制及其对流感病毒致病性的影响
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
Cx43降解-再循环失衡诱导Ⅱ型肺泡上皮细胞凋亡对支气管肺发育不良的影响机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
整联蛋白α6B通过调控肺泡干细胞干性影响特发性肺纤维化进程的分子机制研究
- 批准号:82170083
- 批准年份:2021
- 资助金额:54 万元
- 项目类别:面上项目
相似海外基金
Modulation of Macrophage Antifungal Activity by the Transcriptional Co-regulator CITED1
转录辅助调节因子 CITED1 对巨噬细胞抗真菌活性的调节
- 批准号:
10727860 - 财政年份:2023
- 资助金额:
$ 38.23万 - 项目类别:
The Role of Bone Sialoprotein in Modulating Periodontal Development and Repair
骨唾液酸蛋白在调节牙周发育和修复中的作用
- 批准号:
10752141 - 财政年份:2023
- 资助金额:
$ 38.23万 - 项目类别:
New Advanced Engineering Tools for Investigating Lung Injury and Repair
用于研究肺损伤和修复的新型先进工程工具
- 批准号:
10353671 - 财政年份:2021
- 资助金额:
$ 38.23万 - 项目类别:
New Advanced Engineering Tools for Investigating Lung Injury and Repair
用于研究肺损伤和修复的新型先进工程工具
- 批准号:
10540771 - 财政年份:2021
- 资助金额:
$ 38.23万 - 项目类别: