The role of the free energy landscape in Parkin's function and dysfunction in health and disease

自由能景观在健康和疾病中帕金功能和功能障碍中的作用

基本信息

  • 批准号:
    10356030
  • 负责人:
  • 金额:
    $ 34.08万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-03-01 至 2024-02-28
  • 项目状态:
    已结题

项目摘要

The RING ubiquitin E3 ligases are a superfamily of proteins critical to protein homeostasis and signaling in eukaryotes. Dysfunctions in E3 ligases are implicated in innumerable human diseases. This proposal focuses on the regulation of the ubiquitin E3 ligase Parkin. Parkin is central to the controlled destruction of damaged mitochondria by autophagy (mitophagy). Controlled mitophagy is particularly essential to cardiac and neuronal health. Uncontrolled mitophagy due to mutations in Parkin is clearly a driver of early onset Parkinson's disease (eoPD). Parkin is now implicated in a number of other neurological diseases, cardiomyopathy and in various cancers. The central goal here is to create an understanding the physical basis for regulation of Parkin and how clinically observed mutations promote unregulated activity leading to inadequately controlled mitophagy and other biological defects. Though much is known about the biology and structural basis of Parkin function, very little is certain about the physical basis for its regulation. Parkin activity is suppressed by its intra-molecular association with a ubiquitin-like domain and is allosterically activated by the binding of phosphorylated ubiquitin (pUb). Phosphorlyation of the Ubl domain also promotes activation. This complicated intersection of regulatory mechanisms can only be understood by the rigorous dissection of the underlying thermodynamics. Without this knowledge one cannot fully interpret the effects of mutations that lead to disease. We shall take advantage of the broad foundation of knowledge of the biology of Parkin and structural basis of its function to address the poorly understood thermodynamics of allosteric regulation of Parkin. The basis for regulatory control of Parkin will be cast in a modern statistical thermodynamics description of the protein ensemble. The influence of allosteric regulators and post-translational modifications will be examined by comprehensive hydrogen exchange monitored by mass spectrometry and NMR spectroscopy; advanced NMR relaxation techniques; single molecule fluorescence; calorimetry; enzymology; and mutagenesis. A more rigorous and complete understanding of the regulation of Parkin will enable a robust interpretation of pathological mutations. Not all pathological mutations can be simply explained as mutations that disrupt the levels of protein or mutations that directly impact the catalytic site. Examples of common pathological mutations will be examined to reveal the basis for their effects on Parkin's regulatory fidelity, with a longer- range goal of determining how this impact might be mitigated by small molecule intervention.
RING 泛素 E3 连接酶是一个对蛋白质稳态和信号转导至关重要的蛋白质超家族。 真核生物。 E3 连接酶的功能障碍与无数人类疾病有关。该提案重点 泛素 E3 连接酶 Parkin 的调节。帕金是控制性破坏的核心 通过自噬(线粒体自噬)损伤线粒体。受控线粒体自噬对于心脏尤其重要 和神经元健康。 Parkin 突变导致的不受控制的线粒体自噬显然是早发的驱动因素 帕金森病(eoPD)。帕金现在与许多其他神经系统疾病有关, 心肌病和各种癌症。这里的中心目标是建立对物理的理解 Parkin 调节的基础以及临床观察到的突变如何促进不受调节的活动,从而导致 线粒体自噬和其他生物学缺陷控制不当。 尽管人们对帕金功能的生物学和结构基础了解甚多,但仍知之甚少。 其调节的物理基础。 Parkin 活性通过其分子内关联而受到抑制 泛素样结构域,并通过磷酸化泛素 (pUb) 的结合而变构激活。 Ubl 结构域的磷酸化也会促进激活。这种复杂的监管交叉点 只有通过对基础热力学的严格剖析才能理解机制。没有 这一知识无法完全解释导致疾病的突变的影响。 我们将利用帕金生物学和结构基础的广泛知识基础 其功能可解决人们对 Parkin 变构调节热力学知之甚少的问题。基础 帕金的监管控制将被用现代统计热力学描述来描述 蛋白质整体。变构调节剂和翻译后修饰的影响将是 通过质谱和核磁共振波谱监测的综合氢交换进行检查; 先进的核磁共振弛豫技术;单分子荧光;量热法;酶学;和 诱变。 对 Parkin 监管的更严格和完整的理解将有助于做出强有力的解释 的病理突变。并非所有病理突变都可以简单地解释为破坏性突变 直接影响催化位点的蛋白质或突变的水平。常见病理例子 将检查突变以揭示其对帕金调节保真度影响的基础,并且具有更长的- 确定如何通过小分子干预减轻这种影响的目标。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

A. JOSHUA WAND其他文献

A. JOSHUA WAND的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('A. JOSHUA WAND', 18)}}的其他基金

Improving Fragment Based Drug Discovery and the Development of Tools for Chemical Biology through Nanoscale Encapsulation and NMR Spectroscopy
通过纳米级封装和核磁共振波谱改善基于片段的药物发现和化学生物学工具的开发
  • 批准号:
    10419416
  • 财政年份:
    2022
  • 资助金额:
    $ 34.08万
  • 项目类别:
Improving Fragment Based Drug Discovery and the Development of Tools for Chemical Biology through Nanoscale Encapsulation and NMR Spectroscopy
通过纳米级封装和核磁共振波谱改善基于片段的药物发现和化学生物学工具的开发
  • 批准号:
    10707914
  • 财政年份:
    2022
  • 资助金额:
    $ 34.08万
  • 项目类别:
The role of the free energy landscape in Parkin's function and dysfunction in health and disease
自由能景观在健康和疾病中帕金功能和功能障碍中的作用
  • 批准号:
    10577825
  • 财政年份:
    2020
  • 资助金额:
    $ 34.08万
  • 项目类别:
The role of the free energy landscape in Parkin's function and dysfunction in health and disease
自由能景观在健康和疾病中帕金功能和功能障碍中的作用
  • 批准号:
    9883915
  • 财政年份:
    2020
  • 资助金额:
    $ 34.08万
  • 项目类别:
Nanoscale Encapsulation for Fragment Based Drug Discovery
用于基于片段的药物发现的纳米级封装
  • 批准号:
    9241998
  • 财政年份:
    2016
  • 资助金额:
    $ 34.08万
  • 项目类别:
Sensitivity enhancement in solution NMR through dynamic nuclear polarization
通过动态核极化提高溶液 NMR 的灵敏度
  • 批准号:
    8729503
  • 财政年份:
    2013
  • 资助金额:
    $ 34.08万
  • 项目类别:
Sensitivity enhancement in solution NMR through dynamic nuclear polarization
通过动态核极化提高溶液 NMR 的灵敏度
  • 批准号:
    8875018
  • 财政年份:
    2013
  • 资助金额:
    $ 34.08万
  • 项目类别:
Sensitivity enhancement in solution NMR through dynamic nuclear polarization
通过动态核极化提高溶液 NMR 的灵敏度
  • 批准号:
    8575416
  • 财政年份:
    2013
  • 资助金额:
    $ 34.08万
  • 项目类别:
Fluctuations and entropy in the energetics and function of protein complexes
蛋白质复合物的能量学和功能中的波动和熵
  • 批准号:
    8878296
  • 财政年份:
    2012
  • 资助金额:
    $ 34.08万
  • 项目类别:
Fluctuations and entropy in the energetics and function of protein complexes
蛋白质复合物的能量学和功能中的波动和熵
  • 批准号:
    8515476
  • 财政年份:
    2012
  • 资助金额:
    $ 34.08万
  • 项目类别:

相似国自然基金

基于钙敏感受体的不同激活状态进行多肽变构调节剂筛选以及结构导向的化学修饰改造
  • 批准号:
    22307113
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
P2X3靶向的无味觉失调的变构调节新策略及用于缓解原因未明难治性咳嗽的新分子发现
  • 批准号:
    32371289
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
GABAB受体复合体变构调节的生理和病理研究
  • 批准号:
    32330049
  • 批准年份:
    2023
  • 资助金额:
    221 万元
  • 项目类别:
    重点项目
AMPA受体正向变构调节剂快速抗抑郁作用及其神经机制研究
  • 批准号:
    82371524
  • 批准年份:
    2023
  • 资助金额:
    47 万元
  • 项目类别:
    面上项目
基于CaSR变构调节探讨大米蛋白肽-钙复合物改善肠上皮屏障功能的机制研究
  • 批准号:
    32360576
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Understanding the origins and mechanisms of aryl hydrocarbon receptor promiscuity
了解芳烃受体混杂的起源和机制
  • 批准号:
    10679532
  • 财政年份:
    2023
  • 资助金额:
    $ 34.08万
  • 项目类别:
Cholesterol modulation of BK currents and cerebral artery diameter via channel-forming slo1 subunits
胆固醇通过通道形成 slo1 亚基调节 BK 电流和脑动脉直径
  • 批准号:
    10751934
  • 财政年份:
    2023
  • 资助金额:
    $ 34.08万
  • 项目类别:
O-GlcNac Modulation of GABAergic Transmission
O-GlcNac 对 GABA 能传输的调节
  • 批准号:
    10754746
  • 财政年份:
    2023
  • 资助金额:
    $ 34.08万
  • 项目类别:
The biophysical basis of the ADGRB3 extra-cellular interaction network.
ADGRB3 细胞外相互作用网络的生物物理学基础。
  • 批准号:
    10667127
  • 财政年份:
    2023
  • 资助金额:
    $ 34.08万
  • 项目类别:
Dissecting the molecular mechanisms of PRC2 dysregulation in cancer
剖析癌症中 PRC2 失调的分子机制
  • 批准号:
    10805548
  • 财政年份:
    2023
  • 资助金额:
    $ 34.08万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了