Biophysical Studies of Caveolin
Caveolin 的生物物理学研究
基本信息
- 批准号:10198303
- 负责人:
- 金额:$ 47.11万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAdoptedBehaviorBiochemicalBiogenesisBiologicalBiological ProcessBiophysicsCaveolaeCaveolinsCell membraneCell physiologyCellsCellular MembraneChemicalsCircular Dichroism SpectroscopyComplexComputer ModelsDataDetergentsDiseaseEndocytosisEnvironmentFluorescence Resonance Energy TransferFluorescence SpectroscopyGlareHandHeart DiseasesHybridsIntegral Membrane ProteinInvestigationKnowledgeLengthLinkLipid BilayersLipidsLipodystrophyLung diseasesMalignant NeoplasmsMembraneMembrane ProteinsMethodsModalityModelingMolecularMolecular ConformationMorphologic artifactsMuscular DystrophiesN-terminalNMR SpectroscopyNatureNuclear Magnetic ResonanceNuclear ProteinPathogenesisPhasePhysiologicalPlayPrecipitationProcessProtein IsoformsProteinsRegulationRoleShapesSignal TransductionStructureSurfaceTechniquesTestingTherapeutic InterventionUncertaintyVertebral columnWorkbasebiophysical analysiscaveolin 1cell behaviorcrosslinkdensityexperimental studyflasksin silicoin vivoinnovationinsightintermolecular interactionmechanotransductionmolecular dynamicsmutantnovelnovel strategiespolypeptidepreferencepreservationreconstitutionrestraint
项目摘要
Project Summary/Abstract
Caveolae are flask-shaped invaginated microdomains that punctuate the plasma membrane, and play a
central role in a variety of cellular processes including mechanosensing, endocytosis, and signal transduction.
The integral membrane protein caveolin (three isoforms -1, -2, and -3) is the most important protein found in
caveolae, and is required for caveolae biogenesis. A plethora of studies have shown that improper regulation
and mutant forms of caveolin can result in a variety of diseases including lipodystrophy, muscular dystrophy,
cancer, and heart and lung disease. Based on indirect evidence, the provocative postulation has been put
forth that caveolin adopts a ‘U-shaped’ conformation in the lipid bilayer, a disposition that to our knowledge has
not been definitively characterized for any membrane protein. Furthermore, evidence suggests that caveolin
has the ability to homooligomerize, although recent evidence from our lab has challenged that notion and
brought into focus the uncomfortable possibility that many of the methods used to study caveolin may be
inadvertently promoting non-biologically relevant aggregation. Using a panoply of biophysical and biochemical
techniques (i.e. fluorescence spectroscopy, circular dichroism spectroscopy, nuclear magnetic resonance
[NMR] spectroscopy, chemical cross-linking, and computational modeling) our objective is to probe the
structure, topography and homooligomeric state of caveolin-1 (the most ubiquitous of the three isoforms) in a
lipid bilayer. This will be achieved by pursuing the following three specific aims. 1. Investigation of the putative
‘U-shaped’ conformation of the intramembrane domain. 2. Investigation of the secondary structure of the
N-terminal domain. 3. Investigation of homooligomeric interactions. Specific aim 1 will determine the tertiary
structure and membrane topography of the intramembrane domain which will address the persistent skepticism
surrounding the atomic-level interactions that could make a membrane-buried polypeptide turn possible.
Specific aim 2 will address the long standing question of whether any 𝛂-helices or β-strands are present in the
N-terminal domain, and with the fulfillment of this aim, complete backbone NMR data will finally be available for
caveolin-1. Specific aim 3 will evaluate whether caveolin-1 possesses the ability to oligomerize on its own
when reconstituted into the bilayer at in vivo (i.e. high) surface densities by devising an experiment that will
circumvent the pitfalls that may have derailed previous investigations into oligomerization and led to false
conclusions (e.g. use of detergents, tagging of the protein, etc.). Upon completion of these aims, the key
enigmatic features of caveolin-1 will be manifest, opening the door to deeper insights into disease
pathogenesis and ultimately possible therapeutic interventions that could address the immensely complex
array of disease states linked to aberrant caveolin function.
项目概要/摘要
小凹是烧瓶状的内陷微区,刺穿质膜,并发挥
在多种细胞过程中发挥核心作用,包括机械传感、内吞作用和信号转导。
整合膜蛋白 Caveolin(三种亚型 -1、-2 和 -3)是在
大量研究表明,不当的调节是小凹生物发生所必需的。
小窝蛋白的突变形式可导致多种疾病,包括脂肪营养不良、肌肉营养不良、
基于间接证据,提出了挑衅性的假设。
指出小窝蛋白在脂质双层中采用“U 形”构象,据我们所知,这种配置
尚未明确表征任何膜蛋白。此外,有证据表明小窝蛋白。
具有同源齐聚的能力,尽管我们实验室的最新证据对这一概念提出了挑战,并且
引起人们关注的一个令人不安的可能性是,许多用于研究小窝蛋白的方法可能是
无意中促进了非生物学相关的聚集。
技术(即荧光光谱、圆二色光谱、核磁共振
[NMR] 光谱、化学交联和计算模型)我们的目标是探索
Caveolin-1(三种同工型中最普遍的一种)的结构、形貌和同源寡聚状态
这将通过追求以下三个具体目标来实现: 1. 假定的研究。
膜内结构域的“U形”构象2.二级结构的研究。
N 末端结构域。 3. 研究同源寡聚体相互作用。 具体目标 1 将确定三级。
膜内域的结构和膜形貌将解决持续的怀疑
围绕原子级相互作用,使膜埋多肽转变成为可能。
具体目标 2 将解决长期存在的问题,即是否存在任何 𝛂-螺旋或 β-链
N端域,随着这一目标的实现,完整的主干NMR数据将最终可用于
具体目标3将评估caveolin-1是否具有自身寡聚化的能力
当通过设计实验以体内(即高)表面密度重组为双层时,
规避可能使之前的低聚研究脱轨并导致错误结果的陷阱
结论(例如去垢剂的使用、蛋白质的标记等)。完成这些目标后,关键是。
Caveolin-1的神秘特征将会显现出来,为更深入了解疾病打开大门
发病机制和最终可能的治疗干预措施可以解决极其复杂的问题
一系列与小窝蛋白功能异常相关的疾病状态。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kerney Jebrell Glover其他文献
Kerney Jebrell Glover的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kerney Jebrell Glover', 18)}}的其他基金
Investigation of Caveolin Structure, Topology, and Oligomerization
Caveolin 结构、拓扑和寡聚化的研究
- 批准号:
8847846 - 财政年份:2012
- 资助金额:
$ 47.11万 - 项目类别:
Investigation of Caveolin Structure, Topology, and Oligomerization
Caveolin 结构、拓扑和寡聚化的研究
- 批准号:
8975780 - 财政年份:2012
- 资助金额:
$ 47.11万 - 项目类别:
Investigation of Caveolin Structure, Topology, and Oligomerization
Caveolin 结构、拓扑和寡聚化的研究
- 批准号:
8235522 - 财政年份:2012
- 资助金额:
$ 47.11万 - 项目类别:
Investigation of Caveolin Structure, Topology, and Oligomerization
Caveolin 结构、拓扑和寡聚化的研究
- 批准号:
8412760 - 财政年份:2012
- 资助金额:
$ 47.11万 - 项目类别:
Probing the Organization of Oligosaccharyltransferase
寡糖转移酶的组织探索
- 批准号:
6626176 - 财政年份:2002
- 资助金额:
$ 47.11万 - 项目类别:
Probing the Organization of Oligosaccharyltransferase
寡糖转移酶的组织探索
- 批准号:
6729040 - 财政年份:2002
- 资助金额:
$ 47.11万 - 项目类别:
相似国自然基金
葡萄糖通过调节乙酰化识别蛋白BRD4促进乳腺癌恶性行为的机制和功能研究
- 批准号:32371320
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
赖氨酸甲基转移酶SETD7通过P53信号通路调控Gli1+细胞生物学行为及其在颅面骨稳态维持中的作用研究
- 批准号:82301050
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
斑蝥素通过抑制BIRC5激活ATG5/ATG7促进自噬抑制非小细胞肺癌恶性行为的作用和机制研究进展
- 批准号:82360485
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
M2 TAMs分泌的OGT通过促进糖酵解过程加速肝细胞癌恶性生物学行为的机制研究
- 批准号:82360529
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
蜘蛛香通过调控ERβ/肠道菌群/HPA轴改善溃疡性结肠炎小鼠焦虑样行为的机制研究
- 批准号:82360810
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
Unified, Scalable, and Reproducible Neurostatistical Software
统一、可扩展且可重复的神经统计软件
- 批准号:
10725500 - 财政年份:2023
- 资助金额:
$ 47.11万 - 项目类别:
A Multi-Institute Survivorship Study of Patients Living with Advanced Cancer Who Have Had Durable Response to Immune Checkpoint Inhibitors
对免疫检查点抑制剂有持久反应的晚期癌症患者的多机构生存研究
- 批准号:
10714336 - 财政年份:2023
- 资助金额:
$ 47.11万 - 项目类别:
Crosstalk Between Nurr1 and Risk Factors of Parkinson's Disease and its Regulation by Nurr1's Ligands
Nurr1与帕金森病危险因素的串扰及其配体的调控
- 批准号:
10677221 - 财政年份:2023
- 资助金额:
$ 47.11万 - 项目类别:
Mechanism of epidermal coordination during development and regeneration in zebrafish
斑马鱼发育和再生过程中表皮协调机制
- 批准号:
10643060 - 财政年份:2023
- 资助金额:
$ 47.11万 - 项目类别: