ConProject-002
ConProject-002
基本信息
- 批准号:10192780
- 负责人:
- 金额:$ 14.87万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-16 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAMOT geneAmniotic SacBMP4BedsBiological ModelsCell Differentiation processCell NucleusCellsCouplesCuesCystDataDevelopmentEmbryoEmbryonic DevelopmentEndodermEpiblastEpithelialEquilibriumEthicsEventFertilityGelGene ActivationGenerationsGeneticGenetic EngineeringGenetic TranscriptionGoalsHumanHuman DevelopmentImageImplantInner Cell MassInvestigationKnowledgeLightLiquid substanceLocationManuscriptsMechanicsMembraneMesodermModelingModificationMolecularMolecular ProbesMonkeysMovementMusNatureNuclearPathway interactionsPatternPopulationPregnancyPrimatesProcessRodentRoleSideSignal TransductionSignaling MoleculeSiteStructureSupporting CellSystemTestingTight JunctionsUp-RegulationUterusValidationWorkamnionbaseblastocystcell typegastrulationhuman embryonic stem cellhuman modelhuman pluripotent stem cellimplantationimprovedin vitro Modelinhibitor/antagonistmechanotransductionmouse modelnoveloverexpressionpluripotencyprogramsprospectiveself organizationsingle-cell RNA sequencingspecies differencethree dimensional cell culturetooltranscription factor
项目摘要
The amniotic membrane forms a tough fluid-filled sac that protects the developing embryo and is essential for
a successful pregnancy. Amniogenesis initiates early in human development as the embryo implants into the
uterine wall: the inner cell mass first polarizes to form a pluripotent cyst with central lumen and subsequently,
one half of this polarized cyst loses pluripotency markers and becomes squamous in nature (the prospective
amniotic ecotderm) while the other side (the epiblast) remains pluripotent. Gastrulation begins on the epiblast
side soon thereafter. These early post-implantation developmental steps are inaccessible to study in humans,
leaving an enormous gap in our knowledge about amnion fate determination and formation of the amniotic sac,
despite the central importance of these events to the survival of the developing embryo. A new in vitro model
can help to close that gap: human pluripotent stem cells (hPSC), cultured in specific 3D conditions, form
polarized pluripotent cysts that spontaneously self-organize into symmetric cysts composed entirely of amnion
cells (90-95%) as well as asymmetric cysts that resemble amniotic sac-like structures (5-10%). Asymmetrically
patterned cysts mirror Carnegie stage 5c human embryos and are called “post-implantation amniotic sac
embryoids” or “PASE”. Cyst formation occurs progressively over five days in culture. Live imaging shows that
asymmetric cysts arise from focal flattening at one pole of the cyst and laterally spreading of amnion fate;
symmetric cysts arise when flattening occurs in a multi-focal pattern. Mechanistically, the initial trigger for
amnion differentiation is mechanical and that this causes presumptive amnion cells to activate a BMP signaling
program that is both necessary and sufficient for amniogenesis. At 5 days of culture, PASE contain distinct
populations of amnion, epiblast and boundary cells; epiblast cells initiate EMT movements similar to
gastrulation. We will exploit this robust in vitro model to accomplish the following goals: Aim 1) Explore how
mechanical signals activate BMP signaling. Novel PiggyBac-based tools for genetic modification of hESC will
aid in these studies. Aim 2) Establish the hierarchy of gene activation that results in amniogenesis and
development of mature PASE. Single cell RNAseq will be used to dissect the transcriptional cascade that
accompanies symmetry breaking, spreading amniogenesis, boundary formation and initiation of epiblast EMT
movements. Aim 3) Functionally test transcription factors that control amnion fate. Genetic deletion and
overexpression studies will be used to explore the role of several potential master regulators of amnion fate.
Overall, the work proposed here will greatly accelerate the pace of discovery regarding critical but previously
inaccessible post-implantation events and thus will have enormous implications for understanding early
processes that impact embryonic development and human fertility.
羊膜形成坚韧的充满液体的囊,保护发育中的胚胎,对于胚胎发育至关重要
当胚胎植入子宫时,羊膜形成就在人类发育的早期开始。
子宫壁:内细胞团首先极化形成具有中央腔的多能囊肿,随后,
这种极化囊肿的一半失去了多能性标记并变成鳞状(预期的)
羊膜生态真皮),而另一侧(外胚层)保持多能性,原肠胚形成从外胚层开始。
此后不久,这些早期植入后发育步骤无法在人类身上进行研究,
我们对羊膜命运决定和羊膜囊形成的知识存在巨大差距,
尽管这些事件对于发育中的胚胎的存活至关重要,但新的体外模型。
可以帮助缩小这一差距:在特定 3D 条件下培养的人类多能干细胞 (hPSC) 会形成
极化多能囊肿自发自组织成完全由羊膜组成的对称囊肿
细胞(90-95%)以及类似羊膜囊样结构的不对称囊肿(5-10%)。
图案囊肿反映了卡内基 5c 期人类胚胎,被称为“植入后羊膜囊”
实时成像显示,在培养过程中,囊肿逐渐形成。
不对称囊肿是由于囊肿一极的局部扁平化和羊膜命运的横向扩散而引起的;
当以多焦点模式发生扁平化时,就会出现对称性囊肿,这是最初的触发因素。
羊膜分化是机械性的,这会导致假定的羊膜细胞激活 BMP 信号传导
培养 5 天时,PASE 包含独特的羊膜生成所需的程序。
羊膜、外胚层和边界细胞群启动 EMT 运动,类似于
我们将利用这个强大的体外模型来实现以下目标: 目标 1) 探索如何实现
机械信号激活 BMP 信号转导,用于 hESC 基因修饰的新型 PiggyBac 工具将
目标 2) 建立导致羊膜生成的基因激活层次。
成熟 PASE 的开发将用于剖析转录级联反应
调节对称性破坏、羊膜生成扩散、边界形成和外胚层 EMT 启动
目标 3) 功能测试控制羊膜命运的转录因子。
过度表达研究将用于探索羊膜命运的几种潜在主调节因子的作用。
总体而言,这里提出的工作将大大加快发现关键但以前的问题的步伐
难以接近的植入后事件,因此将对早期理解产生巨大影响
影响胚胎发育和人类生育能力的过程。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kenichiro Taniguchi其他文献
Kenichiro Taniguchi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kenichiro Taniguchi', 18)}}的其他基金
Mechanism of apicosome-driven lumen formation during human and mouse embryogenesis
人类和小鼠胚胎发生过程中顶端体驱动的管腔形成机制
- 批准号:
10650853 - 财政年份:2020
- 资助金额:
$ 14.87万 - 项目类别:
Mechanism of apicosome-driven lumen formation during human and mouse embryogenesis
人类和小鼠胚胎发生过程中顶端体驱动的管腔形成机制
- 批准号:
10249295 - 财政年份:2020
- 资助金额:
$ 14.87万 - 项目类别:
Mechanism of apicosome-driven lumen formation during human and mouse embryogenesis
人类和小鼠胚胎发生过程中顶端体驱动的管腔形成机制
- 批准号:
10029458 - 财政年份:2020
- 资助金额:
$ 14.87万 - 项目类别:
Mechanism of apicosome-driven lumen formation during human and mouse embryogenesis
人类和小鼠胚胎发生过程中顶端体驱动的管腔形成机制
- 批准号:
10424552 - 财政年份:2020
- 资助金额:
$ 14.87万 - 项目类别:
A self-organizing embryoid model of peri-implantation human development
人类植入前发育的自组织胚状体模型
- 批准号:
10192777 - 财政年份:2019
- 资助金额:
$ 14.87万 - 项目类别:
A self-organizing embryoid model of peri-implantation human development
人类植入前发育的自组织胚状体模型
- 批准号:
10427298 - 财政年份:2019
- 资助金额:
$ 14.87万 - 项目类别:
相似海外基金
A self-organizing embryoid model of peri-implantation human development
人类植入前发育的自组织胚状体模型
- 批准号:
10192777 - 财政年份:2019
- 资助金额:
$ 14.87万 - 项目类别: