Virulence Mechanisms of Multifunctional Borrelial Proteins
多功能疏螺旋体蛋白的毒力机制
基本信息
- 批准号:10192642
- 负责人:
- 金额:$ 73.11万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-06-15 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAffinityAmino AcidsAnimal ModelAntibodiesAsiaBacteriaBindingBiochemicalBiological AssayBiophysicsBorreliaBorrelia InfectionsBorrelia afzeliiBorrelia burgdorferiBorrelia burgdorferi GroupBorrelia gariniiBorrelia miyamotoiBorrelia turicataeClassical Complement PathwayClinicalCommunicable DiseasesComplementComplement 1qComplement ActivationComplement component C1rComplexCrystallizationCytolysisDataDiseaseDisease modelEtiologyEuropeEventExperimental ModelsFamilyGenesGeneticGoalsHematogenousHomologous GeneHot SpotHumanImmuneImmunityImmunocompetentImmunomodulatorsImpairmentIn VitroInfectionLipoproteinsLyme DiseaseLyticMeasuresMediatingMedicalMicrobeMicrobiologyMinorModelingMolecularMusNatural ImmunityNatureOrder SpirochaetalesOrthologous GenePathogenesisPathway interactionsPattern RecognitionPeptide HydrolasesPhenotypePhylogenetic AnalysisPlayProteinsReactionRelapsing FeverReportingResolutionRoleSerumSpirochaetales InfectionsStructureSurfaceTestingTicksUnited StatesVector-transmitted infectious diseaseVirulenceX-Ray Crystallographyarmbiophysical techniquescomplement pathwaycomplement systemdesignexperimental studyhuman diseaseimaging approachimmunoregulationin vitro activityin vivoin vivo Modelin vivo imaginginhibitor/antagonistinterdisciplinary approachlyme pathogenesismouse modelmultidisciplinarymutantpathogenrelapsing fever borreliatick borne spirochetevector-bornevector-borne pathogen
项目摘要
PROJECT SUMMARY
Spirochetes of the Borrelia genus are the cause of several prevalent vector-borne diseases. The most
well-known pathogen from this group is Borrelia burgdorferi sensu stricto, which causes over 300,000 cases of
Lyme disease in the United States each year. B. garinii and B. afzelii, which belong to the B. burgdorferi sensu
lato complex, are the primary agent of Lyme disease in Europe and Asia. Borrelia spirochetes are also the
etiological agent of the ancient human disease relapsing fever, as well as a newly recognized infectious
condition called Borrelia miyamotoi disease. Lyme-associated, relapsing fever-associated, and B. miyamotoi
spirochetes have differing lifecycles and their infections are accompanied by distinct clinical presentations.
However, each of these pathogens are known to encode multifunctional surface-expressed lipoproteins that
interact with vertebrate host molecules. Among these proteins are a small arsenal of immunomodulators that
specifically target and inactivate a primary arm of innate immunity known as the complement system. We have
recently reported two independent lines of evidence that support the hypothesis that one of these pathways,
known as the classical pathway, is important in controlling B. burgdorferi infections. First, we have shown that
mice deficient in the pattern recognition molecule of the classical pathway, C1q, are significantly more
susceptible to B. burgdorferi infection. Secondly, we have shown that the lipoprotein B. burgdorferi BBK32 is a
high-affinity inhibitor of the initiating protease of the classical pathway, C1r.
In Aim 1 of this project we seek to understand the C1r inhibitory activity of BBK32 sensu lato proteins at
the molecular level. In Aim 2 we will determine the immunomodulatory roles and virulence contribution of three
BBK32 orthologues known as FbpA, FbpB, and FbpC which are found uniquely in relapsing fever and B.
miyamotoi spirochetes. In Aim 3 we will delineate the role of C1r inhibition in borrelial pathogenesis using in
vivo models of disease. To achieve this, we propose a multi-disciplinary strategy that employs x-ray
crystallography, biophysical approaches, and complement functional assays to pinpoint key ‘hot-spot’ residues
on BBK32 that give rise to its potent anti-C1r activity. These data will inform the design of bbk32 mutants which
will be used in mouse infectivity studies to connect structural features of BBK32, at the amino-acid level, to an
in vivo phenotype. Parallel studies will use genetic deletion mutants of fbp genes from the relapsing fever-
associated spirochetes B. turicatae and B. hermsii. These studies will be paired with experimental models of
Lyme and relapsing fever borrelioses using C1r-/- mice to better understand the role of the classical pathway
initiating protease in the control of borrelial infections. By addressing fundamental questions of how medically
important Borrelia spirochetes recognize and evade host immunity, the studies proposed here stand to have a
broad and significant impact on the field of bacterial pathogenesis.
项目概要
疏螺旋体属的螺旋体是几种流行的媒介传播疾病的原因。
该组中著名的病原体是严格伯氏疏螺旋体 (Borrelia burgdorferi sensu stricto),它导致超过 300,000 例病例
美国每年都会出现莱姆病 B. garinii 和 B. afzelii,它们都属于伯氏疏螺旋体 (B. burgdorferi sensu)。
拉托复合体是欧洲和亚洲莱姆病的主要病原体,也是螺旋体。
古代人类疾病回归热的病原体,以及新发现的传染病
称为宫本疏螺旋体病、回归热相关病和宫本疏螺旋体病。
螺旋体具有不同的生命周期,其感染伴有不同的临床表现。
然而,已知这些病原体中的每一种都编码多功能表面表达的脂蛋白,
这些蛋白质中有一小部分免疫调节剂与脊椎动物宿主分子相互作用。
专门针对并灭活先天免疫的主要臂,即补体系统。
最近报道了两条独立的证据,支持这些途径之一的假设,
被称为经典途径,对于控制伯氏疏螺旋体感染非常重要。首先,我们已经证明了这一点。
缺乏经典途径模式识别分子 C1q 的小鼠,
易受伯氏疏螺旋体感染 其次,我们已经证明脂蛋白伯氏疏螺旋体 BBK32 是一种
经典途径起始蛋白酶 C1r 的高亲和力抑制剂。
在该项目的目标 1 中,我们试图了解 BBK32 感性乳蛋白的 C1r 抑制活性
在目标 2 中,我们将确定三种病毒的免疫调节作用和毒力贡献。
BBK32 直向同源物称为 FbpA、FbpB 和 FbpC,仅在回归热和 B.
在目标 3 中,我们将描述 C1r 抑制在疏螺旋体发病机制中的作用。
为了实现这一目标,我们提出了一种采用 X 射线的多学科策略。
晶体学、生物物理方法和补充功能测定,以查明关键的“热点”残留物
这些数据将为 bbk32 突变体的设计提供信息。
将用于小鼠感染性研究,将 BBK32 在氨基酸水平上的结构特征与
体内表型的平行研究将使用来自回归热的 fbp 基因的遗传缺失突变体。
相关螺旋体 B. turicatae 和 B. Hermsii 的实验模型将与这些研究配对。
使用 C1r-/- 小鼠研究莱姆病和回归热疏螺旋体病,以更好地了解经典途径的作用
通过解决医学上如何启动蛋白酶来控制疏螺旋体感染。
重要的疏螺旋体螺旋体识别并逃避宿主免疫,这里提出的研究表明,
对细菌发病机制领域产生广泛而重大的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Brandon Lee Garcia其他文献
Brandon Lee Garcia的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Brandon Lee Garcia', 18)}}的其他基金
Virulence Mechanisms of Multifunctional Borrelial Proteins
多功能疏螺旋体蛋白的毒力机制
- 批准号:
10620725 - 财政年份:2020
- 资助金额:
$ 73.11万 - 项目类别:
Virulence Mechanisms of Multifunctional Borrelial Proteins
多功能疏螺旋体蛋白的毒力机制
- 批准号:
10407450 - 财政年份:2020
- 资助金额:
$ 73.11万 - 项目类别:
Virulence Mechanisms of Multifunctional Borrelial Proteins
多功能疏螺旋体蛋白的毒力机制
- 批准号:
9985574 - 财政年份:2019
- 资助金额:
$ 73.11万 - 项目类别:
Development of Small Molecule Inhibitors of the Classical Complement Pathway
经典补体途径小分子抑制剂的开发
- 批准号:
9375741 - 财政年份:2017
- 资助金额:
$ 73.11万 - 项目类别:
相似国自然基金
抗原非特异性B细胞进入生发中心并实现亲和力成熟的潜力与调控机制
- 批准号:32370941
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于胞内蛋白亲和力标记策略进行新型抗类风湿性关节炎的选择性OGG1小分子抑制剂的发现
- 批准号:82304698
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向免疫疗法标志物识别的基于多特征融合的肽与MHC亲和力预测研究
- 批准号:62302277
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于计算生物学技术小分子农兽药残留物驼源单域抗体虚拟筛选与亲和力成熟 -以内蒙古阿拉善双峰驼为例
- 批准号:32360190
- 批准年份:2023
- 资助金额:34 万元
- 项目类别:地区科学基金项目
DNA四面体限域辅助的高亲和力铅笔芯微电极用于早期癌症精准诊断研究
- 批准号:22304062
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Engineered tissue arrays to streamline deimmunized DMD gene therapy vectors
工程组织阵列可简化去免疫 DMD 基因治疗载体
- 批准号:
10724882 - 财政年份:2023
- 资助金额:
$ 73.11万 - 项目类别:
Identifying New Astrocytic Kir4.1 Channel Modulators for Treating Huntington's Disease
鉴定用于治疗亨廷顿病的新型星形细胞 Kir4.1 通道调节剂
- 批准号:
10681097 - 财政年份:2023
- 资助金额:
$ 73.11万 - 项目类别:
Structure-based computational engineering of saCas9 PAM requirement
saCas9 PAM 要求的基于结构的计算工程
- 批准号:
10696610 - 财政年份:2023
- 资助金额:
$ 73.11万 - 项目类别:
Structural determinants of activity and mechanism of cationic peptide antibiotic activity against colistin-resistant bacteria
阳离子肽抗生素对粘菌素耐药菌活性的结构决定因素和机制
- 批准号:
10733264 - 财政年份:2023
- 资助金额:
$ 73.11万 - 项目类别: