Enhancing transport and delivery of ferrihydrite nanoparticles via polymer encapsulation in PFAS-contaminated sediments to simulate PFAS defluorination by Acidimicrobium sp. Strain A6
通过聚合物封装在 PFAS 污染的沉积物中增强水铁矿纳米粒子的运输和递送,以模拟 Acidimicrobium sp 的 PFAS 脱氟。
基本信息
- 批准号:10353414
- 负责人:
- 金额:$ 30.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-02-16 至 2023-10-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAmmoniumAnaerobic BacteriaAnimalsBacteriaBiological AvailabilityBioremediationsChemistryDefectDevelopmentDrug Metabolic DetoxicationElectron TransportEncapsulatedEnvironmentEnvironmental Engineering technologyFrequenciesGene ExpressionGenesGoalsGrowthHealthImmunologicsIn SituInjectionsIronKnowledgeLaboratoriesLaboratory AnimalsLearningMethodsMicrobiologyMonitorOrganismOutcomeOxidantsOxidation-ReductionOxidesPeriodicityPhasePoly-fluoroalkyl substancesPolymersProcessPropertyReportingResearchResourcesSchemeSilicon DioxideSiteSoilSolidSourceSuspensionsTechniquesTechnologyTestingTimeUraniumVial deviceWateracrylic acidaqueousconsumer productcontaminated sedimentdesigndrinking waterelectron donorexperimental studyexposed human populationferrihydriteground waterhydrologyinnovationinsightliver injurymaterials sciencemineralizationnanonanoencapsulatednanoparticlenoveloperationoxidationparticleperfluorooctane sulfonateperfluorooctanoic acidpollutantremediationrenal damagereproductivetumorwater quality
项目摘要
Project Summary/Abstract
Per- and polyfluoroalkyl substances (PFAS) are ubiquitous in the environment and highly stable. They
are present in many consumer products and over 4000 different PFAS have been synthesized. Among
the most common and of most concern are perfluorooctanoic acid (PFOA) and perfluoro
octane sulfonate
(PFOS), for which the EPA reports that these compounds can cause reproductive and developmental
defects, liver and kidney damage, and immunological effects in laboratory animals, and that they may
cause tumors in animal studies. Due to the strong C-F bond, no defluorination followed by mineralization
of perfluorinated compounds has been reported so far, except PFAS defluorination by the recently
discovered and isolated Feammox bacterium Acidimicrobium sp. Strain A6 (A6).
A6 oxidizes ammonium (NH4+) while reducing ferric iron (Fe(III)), and it can during this process also
transfer electrons to PFAS and defluorinate them. Bioremediation/biostimulation usually requires
achieving proper biogeochemical conditions via the supply of appropriate electron donors/acceptors,
redox potential manipulation, and bioaugmentation if the required organism is not present. A6 is
common in iron-rich acidic soils, indicating that biostimulation could be an appropriate technology in
many cases to use this organism for PFAS bioremediation schemes. Under electron donor/acceptor
limiting conditions, it is easy to supply NH4+ to an aquifer, while it is challenging to supply and spatially
distribute solid-phase Fe(III), requiring novel methods to enhance the transport of Fe(III) phases. We
hypothesize that polymer encapsulated nano-ferrihydrite can be delivered throughout a porous medium
to stimulate the activity of A6 and its defluorination of PFAS. Hence, the Aims of this project include: (1)
develop polymer-encapsulated nano-ferrihydrite particles that have increased transport properties in a
porous medium; (2) ascertain that the polymer-encapsulated nano-ferrihydrite is bioavailable and
enhances PFAS defluorination by A6; and (3) determine via soil column experiments how to supply the
polymer-encapsulated nano-ferrihydrite to enhance the A6 activity and its defluorination of PFAS.
The outcome of this project will result in the first approach to design and operate a bioremediation
scheme to defluorinate PFAS, which are of increasing health concern and for which drinking water is the
main exposure for humans. This will be achieved by combining techniques and experimental methods
from material science, microbiology, and hydrology/environmental engineering. The project will provide
new knowledge on how to supply a Fe(III) source, which also has other remediation applications, provide
new insights on how to stimulate A6 for the bioremediation of PFAS and other pollutants, and show how
to integrate these findings for an effective PFAS bioremediation scheme that is able to operate for
extended time periods in order to achieve desired final concentration/water quality goals.
项目概要/摘要
全氟烷基物质和多氟烷基物质 (PFAS) 在环境中普遍存在且高度稳定。他们
存在于许多消费品中,已合成了 4000 多种不同的 PFAS。之中
最常见和最受关注的是全氟辛酸(PFOA)和全氟
辛烷磺酸盐
(全氟辛烷磺酸),美国环保署报告称这些化合物可能导致生殖和发育障碍
实验动物的缺陷、肝肾损伤以及免疫学影响,并且它们可能
在动物研究中会导致肿瘤。由于C-F键强,不会发生脱氟和矿化
迄今为止,除 PFAS 脱氟外,目前已报道了全氟化合物的使用情况。
发现并分离出 Feammox 细菌 Acidimicrobium sp。菌株 A6 (A6)。
A6 氧化铵 (NH4+),同时还原三价铁 (Fe(III)),在此过程中还可以
将电子转移至 PFAS 并使其脱氟。生物修复/生物刺激通常需要
通过提供适当的电子供体/受体实现适当的生物地球化学条件,
氧化还原电位操纵,以及生物增强(如果所需的生物体不存在)。 A6 是
常见于富含铁的酸性土壤,表明生物刺激可能是一种合适的技术
许多情况下使用这种生物体进行 PFAS 生物修复计划。电子供体/受体下
在限制条件下,向含水层供应 NH4+ 很容易,但供应和空间上具有挑战性
分布固相 Fe(III),需要新的方法来增强 Fe(III) 相的传输。我们
假设聚合物封装的纳米水铁矿可以在整个多孔介质中传递
刺激A6的活性及其对PFAS的脱氟作用。因此,该项目的目标包括:(1)
开发聚合物封装的纳米水铁矿颗粒,该颗粒具有增强的传输性能
多孔介质; (2) 确定聚合物封装的纳米水铁矿具有生物利用度,并且
通过A6增强PFAS脱氟; (3)通过土柱实验确定如何提供
聚合物封装的纳米水铁矿增强 A6 活性及其对 PFAS 的脱氟作用。
该项目的成果将产生第一种设计和操作生物修复的方法
PFAS 脱氟计划,PFAS 日益引起人们的健康关注,并且饮用水是其中的关键
人类的主要暴露。这将通过技术和实验方法相结合来实现
来自材料科学、微生物学和水文学/环境工程。该项目将提供
关于如何提供 Fe(III) 源的新知识,也有其他修复应用,提供
关于如何刺激 A6 对 PFAS 和其他污染物进行生物修复的新见解,并展示如何
将这些发现整合到一个有效的 PFAS 生物修复计划中,该计划能够持续运行
延长时间以达到所需的最终浓度/水质目标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peter R. Jaffe其他文献
Seasonal distribution of nitrifiers and denitrifiers in urban river sediments affected by agricultural activities
受农业活动影响的城市河流沉积物中硝化菌和反硝化菌的季节分布
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Shan Huang;Chen Chen;Peter R. Jaffe - 通讯作者:
Peter R. Jaffe
Peter R. Jaffe的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peter R. Jaffe', 18)}}的其他基金
Enhancing transport and delivery of ferrihydrite nanoparticles via polymer encapsulation in PFAS-contaminated sediments to simulate PFAS defluorination by Acidimicrobium sp. Strain A6
通过聚合物封装在 PFAS 污染的沉积物中增强水铁矿纳米粒子的运输和递送,以模拟 Acidimicrobium sp 的 PFAS 脱氟。
- 批准号:
10152929 - 财政年份:2021
- 资助金额:
$ 30.56万 - 项目类别:
Enhancing transport and delivery of ferrihydrite nanoparticles via polymer encapsulation in PFAS-contaminated sediments to simulate PFAS defluorination by Acidimicrobium sp. Strain A6
通过聚合物封装在 PFAS 污染的沉积物中增强水铁矿纳米粒子的运输和递送,以模拟 Acidimicrobium sp 的 PFAS 脱氟。
- 批准号:
10515660 - 财政年份:2021
- 资助金额:
$ 30.56万 - 项目类别:
相似国自然基金
过硫酸铵介导烟气硫硝资源电化学协同转化利用研究
- 批准号:22366022
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
硝态氮和钾离子协同促进沼液水培生菜根系发育和铵同化的作用机制
- 批准号:32302809
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
去除水中新PFAS的高效选择性氟化-季铵COFs材料的构建及吸附机理研究
- 批准号:22366033
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
畜禽粪便堆肥中硝酸盐异化还原为铵过程特性及其与N2O排放的耦联机制
- 批准号:42307321
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
医疗废水中的苯扎氯铵协助压电多位点电穿孔杀菌与其同步降解机制
- 批准号:22306026
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Engineering vanadium oxide-based cathode for aqueous ammonium ion batteries
用于水性铵离子电池的工程氧化钒基阴极
- 批准号:
LP220100088 - 财政年份:2023
- 资助金额:
$ 30.56万 - 项目类别:
Linkage Projects
Probing the architecture, assembly, and function of amyloid-polysaccharide entanglements in bacterial biofilms
探究细菌生物膜中淀粉样蛋白-多糖缠结的结构、组装和功能
- 批准号:
10605820 - 财政年份:2023
- 资助金额:
$ 30.56万 - 项目类别:
Harnessing cooperativity to achieve high-precision in vivo measurements
利用协作性实现高精度体内测量
- 批准号:
10745250 - 财政年份:2023
- 资助金额:
$ 30.56万 - 项目类别:
Ammonium-selective membranes to shift water industry into circular economy
铵选择性膜将水工业转变为循环经济
- 批准号:
IE230100048 - 财政年份:2023
- 资助金额:
$ 30.56万 - 项目类别:
Early Career Industry Fellowships
Defining the role of phosphatidic acid as an allosteric regulator of mitochondrial glutaminase
定义磷脂酸作为线粒体谷氨酰胺酶变构调节剂的作用
- 批准号:
10639525 - 财政年份:2023
- 资助金额:
$ 30.56万 - 项目类别: