GENE MANIPULATION CORE
基因操纵核心
基本信息
- 批准号:7699756
- 负责人:
- 金额:$ 19.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-07-01 至 2011-06-30
- 项目状态:已结题
- 来源:
- 关键词:129 MouseAdenosine A1 ReceptorAdenovirusesAdultAliquotAnimal HospitalsAnimal HusbandryAnimalsAreaArtsAtlasesBackBacteriaBacterial Artificial ChromosomesBehavioralBindingBiological AssayBiological PreservationBrainBreedingCategoriesCell SurvivalCellsChimera organismChromosomesClassificationCleaved cellCloningCloning VectorsCodeCollectionColorComplexConsultConsultationsCryopreservationCulture MediaDNADNA analysisDependovirusDetectionDevelopmentDevicesDiploidyDiseaseDominant-Negative MutationDrug resistanceES Cell LineEducational process of instructingEmbryoEmbryo TransferEndoribonucleasesEnsureEnvironmentEquipmentEventExhibitsExperimental DesignsFacility Construction Funding CategoryFemaleFigs - dietaryFosteringFreezingFundingGene ExpressionGene TargetingGene Transfer TechniquesGenerationsGenesGeneticGenetic RecombinationGenomeGenotypeGerm CellsGerm LinesGrowthGuidelinesHarvestHippocampus (Brain)HormonesHornsHousingHuman ResourcesHybridsImplantIn VitroIndividualInfectionInformation ResourcesInjection of therapeutic agentInstitutionJournalsKaryotypeKnock-in MouseKnock-outLaboratoriesLaboratory cultureLentivirus VectorLettersLiquid substanceLocationMaintenanceMammalian OviductsMedicalMental Retardation and Developmental Disabilities Research CentersMessenger RNAMethodsMicroinjectionsMouse StrainsMusMutateMutationNatural regenerationNervous system structureNeuraxisNeuronsNitrogenNumbersOperative Surgical ProceduresPartner in relationshipPatient currently pregnantPatternPediatric HospitalsPersonal SatisfactionPharmaceutical PreparationsPhenotypePhysiologicalPolymerase Chain ReactionPopulationPregnancyProceduresProcessProductionProteinsProtocols documentationQuality ControlRNARNA InterferenceRangeReagentReceptor GeneRecombinant DNARecyclingResearchResearch PersonnelResearch Project GrantsResourcesRetroviridaeRodentSafetySamplingSeriesServicesSiteSmall Interfering RNAStagingStandards of Weights and MeasuresTechnical ExpertiseTechniquesTechnologyTimeTissuesTrainingTransfectionTransgenesTransgenic AnimalsTransgenic MiceTransgenic OrganismsUterusVaginaViral VectorWorkWritingadeno-associated viral vectoranimal breedinganimal colonyanimal facilityanimal resourcebaseblastocystcostdata managementdaydesigndesign and constructiondesireeggembryo cellembryo cultureembryo tissueembryonic stem cellendoribonucleaseexperienceexpression vectorfallsgene therapygerm free conditionhomologous recombinationimplantationinsightmalemedical schoolsmembermouse genomemutantnatural Blastocyst Implantationnew technologynext generationnovelpathogenpluripotencyprogramspromoterprotein expressionpuprecombinaserepairedresearch studysmall hairpin RNAsperm cellstemsuccesstissue culturetooltransgene expressiontransmission processvectorzygote
项目摘要
5.a.2. Overall Objective
The overall objective of the Gene Manipulation Core is to provide all MRDDRC investigators an affordable
quality-controlled service for the generation of genetically altered mouse lines. Centralization within the Core
of the state-of-the-art procedures that are required to generate genetically altered mice results in a costeffective,
quality-controlled generation of these novel mice lines for MRDDRC investigators.
The two main approaches to generating genetically altered mice are briefly summarized below. These are
followed by a description in the Specific Objective section of the specific procedures that are required for these
approaches and that are offered by the Core.
5.a.2.1. Gene Targeting
For gene targeting in mice, mouse lines are generated in which endogenous (wild-type) genes are either
entirely deleted, replaced with different genes, or are otherwise mutated to generate "knock-out" and "knock-in"
mice. In many cases, conditional targeting allows investigators to control the timing during development when
a targeted mutation occurs and/or the specific tissues in which this mutation occurs. The analyses of the
phenotypes of mice with targeted mutations provides insight into the function of endogenous genes during
developmental and disease processes. Gene targeting exploits the pluripotency of mouse embryonic ES cells
which, when injected into host mouse embryos, are capable of generating germ cells (sperm and eggs) that
can pass their genetic content on to subsequent generations. ES cells are manipulated in culture to alter
endogenous ES cell genes with specific mutations. These "targeted" ES cells are then injected into mouse
embryos that are grown to fully mature mice. ES cells contribute to the development of the germ cells, and the
mating of these mice result in the passage of the targeted mutation to the next generation of mice. At this point,
a novel mouse line with the desired mutation is established in which the mutation can be stably transmitted
across generations.
ES cells with specific mutations are generated by homologous recombination in which the endogenous
wildtype ES cell genes are replaced by mutated genes contained in targeting vectors (Fig. C.5.1). These
targeting vectors include genes that confer resistance to drugs that bias for the survival of cells that have
undergone homologous recombination. ES cells are transfected with the targeting constructs and treated with
selection drugs to eliminate cells
that have not undergone
homologous recombination.
After selection, visible colonies
appear which are composed of
clones of an original single cell
that survived the drug selection.
Individual colonies are isolated
and grown to provide samples
for storage as well as for DNA
analysis. Clones are genotyped
to verify those that have
undergone the correct
homologous recombination
event (positive clones). The
chromosome contents of these
clones are analyzed (karyotype
analysis) to identify clones with
the correct number of mouse
chromosomes (40)
Positive ES clones with good karyotypes are microinjected into mouse embryonic day three and one half
(E3.5) blastocysts (see Fig. C.5.2). The injected blastocysts are surgically implanted into recipient females and
pregnancies are allowed to go to full term. Mice born following these procedures are chimeric (sometimes
referred to as FO chimeras); their tissues are derived from both the host blastocyst cells and the injected ES
cells. A typical procedure involves the injection of ES cells derived from an agouti coat color 129 mouse strain
into black C57BL/6 blastocysts. Chimeras that have a high percentage of agouti color are likely candidates for
having germ cells derived from the mutant ES cells. Therefore these animals are likely capable of transferring
the mutation to the next generation (F1). The mating of the chimeric animals to generate non-chimeric F1
offspring with the desired mutation finalizes the establishment of a novel mouse line with the mutation.
5.a.2.2. Transgenics
Transgenic mouse lines are those in which exogenous DMA
(transgenes) are randomly integrated into the genome. Transgenes
direct the expression of molecules that can disrupt normal
development and disease processes. The analyses of the effects of
these molecules give insight to their functions.
Transgenes consist of promoter sequences and coding sequences
that direct the expression of proteins or RNA molecules that inhibit
specific gene expression (RNAi). A variety of different promoter
sequences allow researchers to limit the expression of transgenes to
specific tissues and to specific times during development. Some
promoters direct abnormally high levels of expression. The
expression of other promoters can be regulated in an on/off manner
by the treatment of transgenic animals with specific drugs that direct
the activity of the promoters. The coding sequences can encode
proteins or RNAi molecules that are either wild-type, or mutant.
Mutant proteins include those that are abnormally active as well as
those that act as dominant negative suppressors of normal
endogenous protein activity.
Standard transgenic technology involves the microinjection of
transgenic DMA sequences into the pronuclei of single-cell embryos.
In a subset of the injected embryos, the injected DNA will stably insert
into the mouse genome. This insertion is random and individual
embryos will contain insertions of the DNA at different loci of the
genome. Usually, only one location in the genome per embryo has an
insertion. The location of the insertion greatly influences the
expression of the transgene. While the promoter and other regulatory
sequences within the transgene direct the expression of the transgene
to a certain extent, the influence of the site of insertion on expression
results in a degree of randomness in the expression patterns of
standard transgenes. Thus, once a line has been established,
expression of the transgene must be assessed.
Following microinjection of DNA, the single-cell embryos are allowed
to develop in vitro overnight. A typical injection results in 50-80% of
the injected embryos developing to the two-cell stage. These
embryos are implanted into foster females and the pregnancy is
allowed to go to term. The litters of pups born are designated the FO
generation. Individual FO mouse pups are genotyped to identify those
that have retained the injected transgene. These FO animals are bred
when mature to identify those that pass the transgene to the next
generation (F1). Demonstration that a transgene is transmitted to the
F1 generation and the assessment of the transgene expression level
and pattern are the final steps in the establishment of a new
transgenic line.
5.A.2。总体目标
基因操纵核心的总体目标是为所有MRDDRC研究人员提供负担得起的
质量控制的服务,用于生成遗传变化的小鼠线。核心中的集中化
在产生遗传变化的小鼠所需的最新程序中,会导致成本效益,
MRDDRC研究人员的这些新型小鼠系的质量控制生成。
在下面简要总结了产生遗传变化小鼠的两种主要方法。这些都是
然后在特定程序的特定目标部分中描述这些条件
方法是由核心提供的。
5.A.2.1。基因靶向
对于小鼠的基因靶向,产生了小鼠线,其中内源性(野生型)基因是
完全删除,被不同的基因取代,或者被突变以产生“敲除”和“敲门”
老鼠。在许多情况下,有条件的靶向允许调查人员控制开发过程中的时机
发生靶向突变和/或发生这种突变的特定组织。分析
具有靶向突变的小鼠的表型可洞悉内源基因在期间的功能
发育和疾病过程。基因靶向利用小鼠胚胎ES细胞的多能性
当注射到宿主小鼠胚胎中时,它能够产生生殖细胞(精子和卵)
可以将其遗传含量传递给后代。 ES细胞在培养中被操纵以改变
内源性ES细胞基因具有特异性突变。然后将这些“靶向” ES细胞注入小鼠
生长到完全成熟的小鼠的胚胎。 ES细胞有助于生殖细胞的发展,
这些小鼠的交配导致靶向突变通过下一代小鼠。在此刻,
建立了具有所需突变的新型小鼠系,可以稳定地传播突变
几代人。
具有特定突变的ES细胞是由同源重组产生的,其中内源性
野生型ES细胞基因被靶向载体中包含的突变基因取代(图C.5.1)。这些
靶向载体包括赋予对药物的抗性的基因
经过同源重组。 ES细胞用靶向构建体转染,并用
选择药物以消除细胞
没有经历的
同源重组。
选择后,可见菌落
出现由
原始单元的克隆
在选择药物中幸存下来。
单个菌落是孤立的
并成长以提供样品
用于存储和DNA
分析。克隆是基因型的
验证那些
经历了正确的
同源重组
事件(积极克隆)。这
这些染色体内容
分析克隆(核型
分析)以识别具有
正确的鼠标数
染色体(40)
带有良好核型的正ES克隆微注射到小鼠胚胎第三天半中
(E3.5)胚泡(见图C.5.2)。注射后的胚泡被手术植入受体女性和
允许怀孕完整。按照这些程序出生的小鼠是嵌合(有时
称为Fo Chimeras);它们的组织均来自宿主胚泡细胞和注射的ES
细胞。一个典型的过程涉及注射源自Agouti Coat Color 129小鼠应变的ES细胞
进入黑色C57BL/6胚泡。具有高百分比Agouti颜色的嵌合体可能是候选人
具有源自突变体细胞的生殖细胞。因此,这些动物可能能够转移
下一代的突变(F1)。嵌合动物的交配生成非智力F1
带有所需突变的后代最终确定了具有突变的新型小鼠系。
5.A.2.2。转基因
转基因小鼠线是外源DMA
(转基因)随机整合到基因组中。转基因
指导可能破坏正常的分子的表达
发展和疾病过程。对影响的分析
这些分子可以深入了解它们的功能。
转基因由启动子序列和编码序列组成
指导抑制蛋白质或RNA分子的表达
特定基因表达(RNAi)。各种不同的启动子
序列使研究人员能够将转基因的表达限制为
特定的组织和开发过程中的特定时间。一些
启动子直接异常高水平的表达。这
其他启动子的表达可以以开/关的方式调节
通过用直接的特定药物处理转基因动物
启动子的活动。编码序列可以编码
蛋白质或RNAi分子是野生型或突变体。
突变蛋白包括那些异常活跃的蛋白质以及
那些充当正常的负面抑制器
内源性蛋白活性。
标准转基因技术涉及
转基因DMA序列到单细胞胚胎的原始序列中。
在注射胚胎的子集中,注射的DNA将稳定插入
进入小鼠基因组。此插入是随机的,是个性的
胚胎将包含在不同基因座的DNA插入
基因组。通常,每个胚胎基因组中只有一个位置
插入。插入的位置极大地影响了
转基因的表达。而发起人和其他监管
转基因内的序列指导转基因的表达
在一定程度上,插入位点对表达的影响
导致一定程度的随机性在表达模式中
标准转基因。因此,一旦建立了一条线,
必须评估转基因的表达。
显微注射DNA后,允许单细胞胚胎
一夜之间在体外发展。典型的注射会导致50-80%
注射的胚胎发展到两个细胞阶段。这些
胚胎植入寄养女性,怀孕是
允许任期。幼崽出生的幼虫被指定为fo
一代。单独的小鼠幼崽是基因分型来识别的
保留了注射的转基因。这些fo动物是育种的
当成熟以识别那些传递转基因的人
一代(F1)。演示转基因传输到
F1生成和转基因表达水平的评估
模式是建立新的最终步骤
转基因线。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christopher A. Walsh其他文献
Unveiling causal regulatory mechanisms through cell-state parallax
通过细胞状态视差揭示因果调节机制
- DOI:
10.1101/2023.03.02.530529 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Alexander P. Wu;Rohit Singh;Christopher A. Walsh;Bonnie Berger - 通讯作者:
Bonnie Berger
Recombinant adeno-associated virus-mediated gene transfer into hematopoietic progenitor cells [published erratum appears in Blood 1995 Feb 1;85(3):862]
重组腺相关病毒介导的基因转移到造血祖细胞中[已发表的勘误表出现在 Blood 1995 Feb 1;85(3):862]
- DOI:
- 发表时间:
1994 - 期刊:
- 影响因子:0
- 作者:
S. Goodman;Xiaodong Xiao;Robert E. Donahue;A. Moulton;Jeffery L. Miller;Christopher A. Walsh;N. S. Young;R. Samulski;A. Nienhuis - 通讯作者:
A. Nienhuis
Periventricular heterotopia and the genetics of neuronal migration in the cerebral cortex.
脑室周围异位和大脑皮层神经元迁移的遗传学。
- DOI:
10.1086/302474 - 发表时间:
1999 - 期刊:
- 影响因子:9.8
- 作者:
J. Fox;Christopher A. Walsh - 通讯作者:
Christopher A. Walsh
The Genetics of Brain Malformations
脑畸形的遗传学
- DOI:
10.1002/9781118524947.ch7 - 发表时间:
2015 - 期刊:
- 影响因子:10.4
- 作者:
M. C. Manzini;Christopher A. Walsh - 通讯作者:
Christopher A. Walsh
ARX regulates interneuron subtype differentiation and migration
ARX 调节中间神经元亚型分化和迁移
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Ginam Cho;Youngshin Lim;Shyam K Akula;Abigail K Myers;Connie Chen;Katherine A Rafael;Christopher A. Walsh;Jeffrey A Golden - 通讯作者:
Jeffrey A Golden
Christopher A. Walsh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christopher A. Walsh', 18)}}的其他基金
Somatic mutations in epilepsy: whole genome sequence analysis of single neurons
癫痫的体细胞突变:单个神经元的全基因组序列分析
- 批准号:
8333652 - 财政年份:2012
- 资助金额:
$ 19.2万 - 项目类别:
Somatic mutations in epilepsy: whole genome sequence analysis of single neurons
癫痫的体细胞突变:单个神经元的全基因组序列分析
- 批准号:
8585129 - 财政年份:2012
- 资助金额:
$ 19.2万 - 项目类别:
Somatic mutations in epilepsy: whole genome sequence analysis of single neurons
癫痫的体细胞突变:单个神经元的全基因组序列分析
- 批准号:
8451280 - 财政年份:2012
- 资助金额:
$ 19.2万 - 项目类别:
Human autism genetics and activity dependent gene activation
人类自闭症遗传学和活动依赖性基因激活
- 批准号:
7854091 - 财政年份:2009
- 资助金额:
$ 19.2万 - 项目类别:
Human autism genetics and activity dependent gene activation
人类自闭症遗传学和活动依赖性基因激活
- 批准号:
7941723 - 财政年份:2009
- 资助金额:
$ 19.2万 - 项目类别:
Genetic Analysis of Microcephaly in Tunisian Population
突尼斯人群小头畸形的遗传分析
- 批准号:
7429860 - 财政年份:2008
- 资助金额:
$ 19.2万 - 项目类别:
Autism genetics: homozygosity mapping and functional validation
自闭症遗传学:纯合性作图和功能验证
- 批准号:
8531350 - 财政年份:2007
- 资助金额:
$ 19.2万 - 项目类别:
Finding Autism Genes by Genomic Copy Number Analysis
通过基因组拷贝数分析寻找自闭症基因
- 批准号:
7872965 - 财政年份:2007
- 资助金额:
$ 19.2万 - 项目类别:
INVESTIGATION OF THE CLINICAL FEATURES OF PERIVENTRICULAR NODULAR HETEROTOPIA
脑室周围结节性异位的临床特征探讨
- 批准号:
7606921 - 财政年份:2007
- 资助金额:
$ 19.2万 - 项目类别:
Finding Autism Genes by Genomic Copy Number Analysis
通过基因组拷贝数分析寻找自闭症基因
- 批准号:
7631226 - 财政年份:2007
- 资助金额:
$ 19.2万 - 项目类别:
相似国自然基金
基于肝脏腺苷A1受体调控的PKA-SCAP-SREBP1c通路研究知母皂苷AⅢ治疗NAFLD的分子机理
- 批准号:82374129
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
电针调控中枢腺苷A1/A2A受体平衡抑制炎症性肠病诱发焦虑的机制
- 批准号:
- 批准年份:2021
- 资助金额:55 万元
- 项目类别:面上项目
电针调控中枢腺苷A1/A2A受体平衡抑制炎症性肠病诱发焦虑的机制
- 批准号:82174500
- 批准年份:2021
- 资助金额:55.00 万元
- 项目类别:面上项目
A1/A3腺苷受体增敏调控小胶质细胞炎性及促髓鞘重塑修复慢性缺血性脑白质损伤作用和机制
- 批准号:81871034
- 批准年份:2018
- 资助金额:53.0 万元
- 项目类别:面上项目
肾素(前体)受体影响ABCA1/G1介导的胆固醇外流及参与大鼠动脉粥样硬化的机制研究
- 批准号:81800379
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
相似海外基金
A genomic characterization of the response to sleep loss
睡眠不足反应的基因组特征
- 批准号:
10928421 - 财政年份:2023
- 资助金额:
$ 19.2万 - 项目类别:
Allostery-driven G protein selectivity in the adenosine A1 receptor
腺苷 A1 受体中变构驱动的 G 蛋白选择性
- 批准号:
BB/W016974/1 - 财政年份:2023
- 资助金额:
$ 19.2万 - 项目类别:
Research Grant
Functional consequences of cocaine self-administration on astrocytes
可卡因自我给药对星形胶质细胞的功能影响
- 批准号:
10682221 - 财政年份:2023
- 资助金额:
$ 19.2万 - 项目类别:
The role of A1 adenosine receptor signaling in the decline of S. pneumoniae killing by neutrophils in vaccinated aged hosts
A1 腺苷受体信号传导在疫苗接种老年宿主中中性粒细胞杀伤肺炎链球菌下降中的作用
- 批准号:
10605737 - 财政年份:2023
- 资助金额:
$ 19.2万 - 项目类别:
Allostery-driven G protein selectivity in the adenosine A1 receptor
腺苷 A1 受体中变构驱动的 G 蛋白选择性
- 批准号:
BB/W014831/1 - 财政年份:2022
- 资助金额:
$ 19.2万 - 项目类别:
Research Grant