Distributed, Collaborative Intelligent Agents for Proactive Post-Marketing Drug S
用于主动上市后药物的分布式协作智能代理
基本信息
- 批准号:7677848
- 负责人:
- 金额:$ 17.81万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-09-01 至 2011-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAdverse reactionsAntihypertensive AgentsArchitectureArtificial IntelligenceBenefits and RisksBioterrorismBoxingCessation of lifeCisaprideClinicalClinical MedicineCognitiveComputer softwareComputerized Medical RecordCountryData SecurityDecision MakingDetectionDevelopmentDoseDrug usageEarly DiagnosisEventFamily PracticeFormulariesFrequenciesHealth Care CostsHealth care facilityHealthcareHealthcare SystemsInsurance CarriersInternal MedicineInternetLabelLeadLiteratureMarketingMedicalMedical centerMethodologyModelingMonitorMorbidity - disease rateNamesNatureOperating SystemPatientsPerformancePharmaceutical PreparationsPharmacistsPharmacy facilityPhasePhysiciansPilot ProjectsPlayPoliciesPublishingReactionReportingResearchRiskRoleSafetySignal TransductionSystemTechnologyTestingUncertaintyUniversitiesWithdrawalbasecohortcomputerizedcostdesigndrug marketeffective therapyempoweredimprovedinformation processinginnovationinterestmembermortalitymultidisciplinarynovelpatient privacypost-marketprototypepublic health relevancesoftware development
项目摘要
DESCRIPTION (provided by applicant): Healthcare systems and insurers nationwide regularly make decisions regarding which drugs to include or exclude from their formularies based on evidence concerning benefits, risks, and costs of the medications. A major barrier to effective drug selection is the lack of sufficient published information on the safety of drugs, particularly new drugs. A computerized system operating at healthcare facilities that could provide continuous, active surveillance and timely identification of potential safety issues following the introduction of a new drug to a formulary is highly desirable. Such a system could lead to safer drug use policy, more cost-effective formulary decisions, better healthcare, and earlier detection of adverse drug reactions (ADRs). The implications of such technology for improving a national drug surveillance system will be apparent because ADRs can complicate the patient's medical condition, increase morbidity, and result in death (about 7,000 deaths per year in the U.S. were attributed to ADRs). At present, evidence on safety issues that would inform these decisions is generated primarily by the FDA's post-marketing surveillance system MedWatch(tm). MedWatch(tm) is a passive system that depends on voluntary, spontaneous reports. Because the system is limited by low reporting rates and the slow accumulation of sufficient events to enable a critical analysis, delays occur in the identification and withdrawal of problematic drugs from the market or labeling them with black box warnings. These delays have resulted in unnecessary mortality, morbidity, and costs of healthcare.
We propose to develop an innovative team-based agent system, named ADRMonitor, for actively monitoring and detecting signal pairs implicating anticipated or potential ADRs at a healthcare facility. Each ADRMonitor user (e.g., physicians and drug safety officers) will have his/her own software agent that is accessible via the Internet and plays two roles -- assisting the user in his/her decision-making, and collaborating with agents of other team members. A key feature of the proposed approach is that the agents will continuously and autonomously collaborate with one another. They anticipate information needs of their teammates and share information proactively so that the users can be alerted timely about signal pairs.
To demonstrate the feasibility, we plan to develop a prototype of ADRMonitor in this two-year pilot project, which will be undertaken collaboratively by our multidisciplinary team. Our preliminary design and analysis show the proposed methodology to be promising. The proposed effort represents a critical first step toward a subsequent development of a more comprehensive ADRMonitor in later phases of this research endeavor that would use the signal pairs to detect ADRs and expand the resultant system to cover healthcare in a region or across the country. The proposed methodology is general in nature and can be adapted for other important applications such as bioterrorism surveillance.
PUBLIC HEALTH RELEVANCE: A computerized system operating at healthcare facilities that could provide continuous, active surveillance and timely identification of potential safety issues following the introduction of a new drug to a formulary is highly desirable. Such a system could lead to safer drug use policy, more cost-effective formulary decisions, better healthcare, and earlier detection of adverse drug reactions (ADRs). The implications of such technology for improving a national drug surveillance system will be apparent because ADRs can complicate the patient's medical condition, increase morbidity, and result in death (about 7,000 deaths per year in the U.S. were attributed to ADRs).
描述(由申请人提供):全国医疗保健系统和保险公司定期根据有关福利,风险和费用的证据来决定哪些药物包括或排除在其配置中。有效选择药物的主要障碍是缺乏有关药物安全性(尤其是新药的安全性)的足够发表的信息。非常需要在医疗机构运行的计算机系统,该系统可以提供持续的,积极的监视并及时确定向配方将新药引入新药后潜在的安全问题。这样的系统可能会导致更安全的药物使用政策,更具成本效益的制定决策,更好的医疗保健以及早期发现不良药物反应(ADR)。这种技术对改善国家药物监测系统的含义将显而易见,因为ADR会使患者的医疗状况复杂化,发病率增加并导致死亡(美国每年约7,000人死亡归因于ADR)。目前,关于这些决定的安全问题的证据主要由FDA的市场后监视系统MEDWATCH(TM)产生。 Medwatch(TM)是一个被动系统,取决于自发报告。由于该系统受到低报告率和足够事件的缓慢积累以实现批判性分析的限制,因此在识别和撤回有问题的药物从市场上或向其标记黑匣子警告时发生延迟。这些延迟导致了不必要的死亡率,发病率和医疗保健成本。
我们建议开发一个基于创新的团队代理系统,名为Adrmonitor,以积极监视和检测信号对,这对医疗机构牵涉到预期或潜在的ADR。每个Adrmonitor用户(例如,医师和药物安全官员)将拥有自己的软件代理,可以通过互联网访问并扮演两个角色 - 协助用户做出他/她的决策,并与其他团队成员的代理商合作。拟议方法的一个关键特征是代理商将不断自主地进行合作。他们可以预期队友的信息需求并主动共享信息,以便可以及时提醒用户有关信号对。
为了证明可行性,我们计划在这个为期两年的试点项目中开发Adrmonitor的原型,该项目将由我们的多学科团队合作进行。我们的初步设计和分析表明,提出的方法是有希望的。拟议的努力代表了在这项研究努力的后期阶段迈向更全面的Adrmonitor迈出的关键第一步,该阶段将使用信号对检测ADR并扩展所得系统,以覆盖全国或全国各地的医疗保健。所提出的方法本质上是一般性的,可以适用于其他重要应用,例如生物恐怖主义监测。
公共卫生相关性:一种在医疗机构运行的计算机系统,可以提供持续的,积极的监视并及时确定向配方将新药引入新药后潜在安全问题。这样的系统可能会导致更安全的药物使用政策,更具成本效益的制定决策,更好的医疗保健以及早期发现不良药物反应(ADR)。这种技术对改善国家药物监测系统的含义将显而易见,因为ADR会使患者的医疗状况复杂化,发病率增加并导致死亡(美国每年约7,000人死亡归因于ADR)。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
HAO YING其他文献
HAO YING的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('HAO YING', 18)}}的其他基金
Distributed, Collaborative Intelligent Agents for Proactive Post-Marketing Drug S
用于主动上市后药物的分布式协作智能代理
- 批准号:
7532069 - 财政年份:2008
- 资助金额:
$ 17.81万 - 项目类别:
A Treatment Decision Modeling and Optimizing Technology
治疗决策建模与优化技术
- 批准号:
6879076 - 财政年份:2003
- 资助金额:
$ 17.81万 - 项目类别:
A Treatment Decision Modeling and Optimizing Technology
治疗决策建模与优化技术
- 批准号:
6726858 - 财政年份:2003
- 资助金额:
$ 17.81万 - 项目类别:
A Treatment Decision Modeling and Optimizing Technology
治疗决策建模与优化技术
- 批准号:
6601515 - 财政年份:2003
- 资助金额:
$ 17.81万 - 项目类别:
相似国自然基金
基于多属性融合药物间不良反应预测的关键问题研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于真实世界数据的创新药品上市后严重罕见不良反应评价关键方法研究
- 批准号:72204173
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
儿童药品不良反应主动监测中时序处理策略的方法学研究
- 批准号:82204149
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
D.formicigenerans菌通过调控FoxP3-Treg影响PD-1抑制剂所致免疫相关不良反应的机制研究
- 批准号:82204534
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
OR10G7错义突变激活NLRP3炎症小体致伊马替尼严重皮肤不良反应的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
相似海外基金
CLOSED-LOOP BLOOD PRESSURE CONTROL BY NEURAL STIMULATION FOR CARDIAC CARE ENVIRONMENT
通过神经刺激控制心脏护理环境的闭环血压
- 批准号:
9099079 - 财政年份:2016
- 资助金额:
$ 17.81万 - 项目类别: