Role of Molecular Chaperones in Stress Response and Disease
分子伴侣在应激反应和疾病中的作用
基本信息
- 批准号:9925819
- 负责人:
- 金额:$ 64.62万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-05-01 至 2022-04-30
- 项目状态:已结题
- 来源:
- 关键词:AcidsAmyloidAmyloidosisBacteriaBiochemicalBloodCellsDiseaseDissociationEnterobacteriaceaeEukaryotaExposure toGoalsHost DefenseHypochlorous AcidInsectaLeishmania infantumMammalsMicrobial BiofilmsMitochondriaMolecular ChaperonesMolecular ConformationMutationNeurodegenerative DisordersNeuronsOrganismOxidation-ReductionParasitesParkinson DiseasePathway interactionsPhysiologicalPlayPolymersPolyphosphatesPolypsProcessProteinsResearchResistanceResolutionRoleSiteStomachStressStructureSuggestionSystemTemperatureTestingTimeToxic effectWorkYeastsacid stressamyloid formationanalogantimicrobialbeta pleated sheetbiological adaptation to stressdisulfide bondflexibilityimprovednovelpathogenic bacteriaprotein foldingprotein protein interactionproteotoxicityscaffoldthermostabilitytool
项目摘要
Many organisms regularly encounter fast-acting, highly proteotoxic stress conditions, including exposure to the
physiological antimicrobial hypochlorous acid (HOCl), highly elevated temperatures or acid stress. To survive
these stress conditions, they employ a class of ATP-independent, stress specific chaperones, whose
posttranslational activation is tailored towards the stress conditions that require their chaperone functions. Our
lab investigates four of these stress-specific chaperones; Hsp33, which is activated by oxidative disulfide bond
formation to protect bacteria and eukaryotic parasites against HOCl, which is commonly produced by cells of
the innate host defense; Get3, a redox-regulated Hsp33 analogue that protects yeast and likely other
eukaryotes against oxidative protein damage; HdeA, which is rapidly activated by acid-induced dissociation
and protects enteric bacteria against acid-stress encountered in the mammalian stomach; and mitochondrial
Prdx2 from Leishmania infantum, which is a temperature-regulated chaperone that protects parasites against
the sudden temperature shift as they transit from insects to warm-blooded mammals. All four of these proteins
are chaperone-inactive and stably folded under non-stress conditions but are activated following very rapid,
stress-induced conformational rearrangements, converting them into proteins with extensive regions of intrinsic
disorder. We will now combine mutational, biochemical and high-resolution structural tools to elucidate the
precise working mechanism of these proteins, testing the hypothesis that stress-induced unfolding serves to
generate novel, highly flexible protein-protein interaction sites. These studies have the potential to open up a
completely new perspective in chaperone research, protein folding and stress response pathways. In a
separate line of research, we discovered that polyphosphate (polyP), which is a universally conserved, very
abundant and ubiquitously distributed polymer, works as a highly effective protein-stabilizing scaffold. This
demonstrates that protein chaperones are not the only cellular solution to deal with proteotoxic stress
conditions. We found that polyP increases the thermostability of proteins by stabilizing them in a
predominantly β-sheet conformation. This finding helps to explain how polyP confers resistance to stress
conditions that cause protein unfolding. At the same time, it also explains how polyP acts to accelerate
processes such as bacterial biofilm formation, which depend on the stabilization of amyloid-like proteins in a
fibril-forming cross-β-sheet conformation. We recently realized that polyP equally accelerates fibril formation of
disease-associated amyloids. This activity appears to reduce the amount of toxic oligomers and, most
importantly, protects neurons against amyloid toxicity. We will now further investigate this exciting suggestion
that polyP is a physiologically important cytoprotective modifier of amyloidogenic processes, and might play a
role in Parkinson's disease and potentially other neurodegenerative diseases associated with amyloid
formation.
许多生物体经常遇到快速作用、高蛋白毒性的应激条件,包括暴露于
生理抗菌次氯酸 (HOCl)、高温或酸胁迫下生存。
在这些应激条件下,它们采用一类不依赖于 ATP 的应激特异性伴侣,其
翻译后激活是针对需要其伴侣功能的应激条件而定制的。
实验室研究了其中四种应激特异性伴侣;Hsp33 由氧化二硫键激活;
形成以保护细菌和真核寄生虫免受次氯酸的侵害,次氯酸通常由以下细胞产生
先天宿主防御;Get3,一种氧化还原调节的 Hsp33 类似物,可保护酵母和其他可能的物质
真核生物抵抗氧化蛋白损伤;HdeA 被酸诱导的解离迅速激活;
保护肠道细菌免受哺乳动物胃和线粒体中的酸应激;
来自婴儿利什曼原虫的 Prdx2,它是一种温度调节伴侣,可保护寄生虫免受侵害
当它们从昆虫转变为温血哺乳动物时温度突然变化 所有这四种蛋白质。
分子伴侣在非应激条件下不活跃且稳定折叠,但在非常快的速度后被激活,
应激诱导的构象重排,将其转化为具有广泛内在区域的蛋白质
我们现在将结合突变、生化和高分辨率结构工具来阐明这一疾病。
这些蛋白质的精确工作机制,检验压力诱导的展开有助于的假设
这些研究有可能开辟新的、高度灵活的蛋白质-蛋白质相互作用位点。
伴侣研究、蛋白质折叠和应激反应途径的全新视角。
在单独的研究中,我们发现聚磷酸盐 (polyP),这是一种普遍保守的、非常
丰富且分布广泛的聚合物,可作为高效的蛋白质稳定支架。
证明蛋白质伴侣并不是应对蛋白毒性应激的唯一细胞解决方案
我们发现,polyP 通过稳定蛋白质来提高蛋白质的热稳定性。
主要是β-片层构象,这一发现有助于解释polyP如何赋予抗应激能力。
同时,它还解释了polyP如何加速蛋白质的展开。
细菌生物膜形成等过程取决于淀粉样蛋白在细菌中的稳定性
我们最近意识到,polyP 同样可以加速原纤维的形成。
这种活性似乎可以减少有毒低聚物的量,并且大多数。
重要的是,保护神经元免受淀粉样蛋白毒性。我们现在将进一步研究这一令人兴奋的建议。
PolyP 是淀粉样蛋白生成过程的生理上重要的细胞保护调节剂,并且可能发挥
在帕金森病和与淀粉样蛋白相关的其他潜在神经退行性疾病中的作用
形成。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ursula H. Jakob其他文献
Ursula H. Jakob的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ursula H. Jakob', 18)}}的其他基金
Linking Histone Modifications, HSF-1 activity and Lifespan
连接组蛋白修饰、HSF-1 活性和寿命
- 批准号:
10508860 - 财政年份:2022
- 资助金额:
$ 64.62万 - 项目类别:
Linking Histone Modifications, HSF-1 activity and Lifespan
连接组蛋白修饰、HSF-1 活性和寿命
- 批准号:
10683390 - 财政年份:2022
- 资助金额:
$ 64.62万 - 项目类别:
Role of Molecular Chaperones in Stress Response and Disease
分子伴侣在应激反应和疾病中的作用
- 批准号:
10159934 - 财政年份:2017
- 资助金额:
$ 64.62万 - 项目类别:
Role of Molecular Chaperones in Stress Response and Disease
分子伴侣在应激反应和疾病中的作用
- 批准号:
9474648 - 财政年份:2017
- 资助金额:
$ 64.62万 - 项目类别:
Polyphosphate - A Novel Member of the Proteostasis Network
多磷酸盐 - 蛋白质稳态网络的新成员
- 批准号:
9118242 - 财政年份:2015
- 资助金额:
$ 64.62万 - 项目类别:
Polyphosphate - A Novel Member of the Proteostasis Network
多磷酸盐 - 蛋白质稳态网络的新成员
- 批准号:
8987288 - 财政年份:2015
- 资助金额:
$ 64.62万 - 项目类别:
2015 Stress Proteins in Growth, Development and Disease GRC
2015 生长、发育和疾病 GRC 中的应激蛋白
- 批准号:
8976890 - 财政年份:2015
- 资助金额:
$ 64.62万 - 项目类别:
Investigation of developmental peroxide generation as an important lifespan-deter
发育性过氧化物生成作为重要的寿命阻止因素的研究
- 批准号:
8716042 - 财政年份:2014
- 资助金额:
$ 64.62万 - 项目类别:
相似国自然基金
生物膜界面手性对Aβ错误折叠及纤维化的影响
- 批准号:51873168
- 批准年份:2018
- 资助金额:65.0 万元
- 项目类别:面上项目
外周源性Abeta在阿尔茨海默病发生中的作用和机制研究
- 批准号:81701043
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
vitronectin在淀粉样变性病蛋白质异常折叠中的作用机制研究
- 批准号:81600562
- 批准年份:2016
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
建立利用激光显微切割联合质谱蛋白质组学技术鉴定系统性淀粉样变性患者中致淀粉样变性蛋白类型的方法
- 批准号:81370672
- 批准年份:2013
- 资助金额:16.0 万元
- 项目类别:面上项目
TTR基因参与玻璃体淀粉样变性发病分子机制的研究
- 批准号:81360150
- 批准年份:2013
- 资助金额:48.0 万元
- 项目类别:地区科学基金项目
相似海外基金
Anti-medin immunotherapy for vascular aging and related dementias
针对血管老化和相关痴呆的抗 Medin 免疫疗法
- 批准号:
10724869 - 财政年份:2023
- 资助金额:
$ 64.62万 - 项目类别:
Astrocyte regulation of cerebral blood flow at the intersection of ischemia and Alzheimer's disease
星形胶质细胞对缺血和阿尔茨海默病交叉点脑血流的调节
- 批准号:
10774128 - 财政年份:2023
- 资助金额:
$ 64.62万 - 项目类别:
Dark GPCR signaling underlying the Microbiome-Gut-Brain Axis for Alzheimer's Disease and Related Dementia
阿尔茨海默病和相关痴呆症微生物组-肠-脑轴的暗 GPCR 信号传导
- 批准号:
10719150 - 财政年份:2023
- 资助金额:
$ 64.62万 - 项目类别:
Elucidating roles of microglial lipid droplets in neurodegeneration
阐明小胶质细胞脂滴在神经退行性变中的作用
- 批准号:
10605044 - 财政年份:2023
- 资助金额:
$ 64.62万 - 项目类别:
The intersection of GLP-1, gut microbiota, and brain connectivity in prodromal Alzheimer’s disease
GLP-1、肠道微生物群和大脑连接在阿尔茨海默病前驱期的交叉作用
- 批准号:
10352498 - 财政年份:2022
- 资助金额:
$ 64.62万 - 项目类别: