The RNA nanomachines of the gene expression machinery dissected at the single molecule level
在单分子水平上剖析基因表达机器的RNA纳米机器
基本信息
- 批准号:9920170
- 负责人:
- 金额:$ 84.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-05-01 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:AddressBacterial RNABiochemicalBiologicalBiologyBiophysicsCatalytic RNACell physiologyComplexComputer SimulationConsensusCouplingCryoelectron MicroscopyDNA-Directed RNA PolymeraseDyesElectron MicroscopyElectrostaticsEncapsulatedEnzymatic BiochemistryFluorescence MicroscopyFluorescent ProbesGene ExpressionGenesGeneticGenetic TranscriptionGoalsIndividualKineticsLengthLifeLigandsLightMessenger RNAOutcomePlant RootsProcessRNARNA FoldingRNA SplicingRNA analysisRNA chemical synthesisResearchSiteSpliceosomesStructureStructure-Activity RelationshipThermodynamicsThinkingTimeTranscriptTranscriptional RegulationTranslationsUntranslated RNAbasegene functionmolecular dynamicsnanomachinenanoscalesingle moleculesingle-molecule FRET
项目摘要
TITLE:
The RNA nanomachines of gene expression dissected at the single molecule level
ABSTRACT:
Over two decades, the Walter lab has contributed to the RNA field by building a broad research portfolio focused
on dissecting the mechanisms of the nanoscale RNA machines of gene expression – ranging from small viroidal
ribozymes and bacterial riboswitches to the eukaryotic spliceosome – by single molecule fluorescence
microscopy. Leveraging this expertise, the two long-term goals of the current proposal are to: 1.) Apply our
established mechanistic enzymology approaches to an ever broader set of RNAs involved in regulating
transcription, translation and splicing, seizing the opportunities arising from the continuing discoveries of new
functional RNAs. 2.) Push the limits of our approaches to be able to probe increasingly complex biological
contexts and mechanisms since unexpected discoveries – as we found – often await where individual RNA
nanomachines interact. In pursuit of these goals, we will address the overarching hypothesis that dynamic RNA
structures are a major determinant of the outcomes of gene expression, often in ways that have been overlooked
by a field that historically was rooted in genetics, where genes regularly were drawn as rectangular boxes, and
function commonly was thought of as dictated by sequence rather than structure. Such thinking is countered by,
for example, the fact that nascent RNA structure has a significant impact on transcription in the form of regulatory
riboswitches embedded near the 5' ends of bacterial mRNAs and of transcription terminator hairpins at the 3'
end. Conversely, the time-ordered, 5'-to-3' directional RNA synthesis of transcription often yields kinetically
trapped RNA folds distinct from the most thermodynamically stable structure of a refolded full-length transcript.
Encapsulating the power of our pursuit, we recently combined single-molecule, biochemical and computational
simulation approaches to show that transcriptional pausing at a site immediately downstream of a riboswitch
requires a ligand-free pseudoknot in the nascent RNA, a precisely spaced consensus pause sequence, and
electrostatic and steric interactions with the exit channel of bacterial RNA polymerase. We posit that many more
examples of such intimate structural and kinetic coupling between RNA folding and gene expression remain to
be discovered, leading to the exquisite regulatory control and kinetic proofreading enabling all life processes. To
reveal more such couplings, we will probe the dynamics of carefully purified transcriptional and translational
riboswitch-containing, as well as spliceosomal, gene expression complexes using a tailored combination of
single molecule fluorescence resonance energy transfer (smFRET), Single Molecule Kinetic Analysis of RNA
Transient Structure (SiM-KARTS) based on super-resolved co-localization of RNA targets and fluorescent
probes, cryo-electron microscopy – augmented by a proposed dye-based single molecule correlative light
electron microscopy (smCLEM) – and, where appropriate, molecular dynamics simulations. We anticipate that
these studies have the potential to transform our understanding of RNA structure-function relationships in
general, and of how RNA structure is governing the function of cellular gene expression machines in particular.
标题:
在单分子水平上剖析基因表达的RNA纳米机器
抽象的:
二十年来,Walter 实验室通过建立广泛的研究组合,为 RNA 领域做出了贡献
剖析基因表达的纳米级RNA机器的机制——从小型病毒
核酶和细菌核糖开关连接真核剪接体——通过单分子荧光
利用这种专业知识,当前提案的两个长期目标是: 1.) 应用我们的技术。
建立了机械酶学方法来研究涉及调节的更广泛的 RNA
转录、翻译和剪接,抓住不断发现新事物所带来的机会
2.) 突破我们方法的极限,能够探测日益复杂的生物。
正如我们所发现的,意外的发现常常等待着个体 RNA
为了实现这些目标,我们将解决动态 RNA 的总体假设。
结构是基因表达结果的主要决定因素,但其方式往往被忽视
历史上植根于遗传学的领域,其中基因通常被绘制为矩形框,并且
功能通常被认为是由顺序而不是结构决定的,这种想法与以下观点相反。
例如,新生 RNA 结构以调控形式对转录产生重大影响。
核糖开关嵌入细菌 mRNA 的 5' 末端和 3' 转录终止子发夹附近
离线时,转录的按时间顺序的 5' 至 3' 定向 RNA 合成通常会产生动力学结果。
被捕获的 RNA 折叠与重折叠全长转录物的热力学最稳定的结构不同。
为了体现我们追求的力量,我们最近将单分子、生化和计算结合起来
模拟方法表明转录暂停在紧邻核糖开关下游的位点
需要新生 RNA 中存在无配体的假结、精确间隔的共有暂停序列,以及
我们假设还有更多与细菌 RNA 聚合酶出口通道的静电和空间相互作用。
RNA 折叠和基因表达之间这种密切的结构和动力学耦合的例子仍然存在
被发现,导致精确的调控和动力学校对,使所有生命过程得以实现。
揭示更多这样的耦合,我们将探讨仔细纯化的转录和翻译的动力学
含有核糖开关以及剪接体的基因表达复合物,使用定制的组合
单分子荧光共振能量转移 (smFRET)、RNA 的单分子动力学分析
基于 RNA 靶标和荧光的超分辨共定位的瞬时结构 (SiM-KARTS)
探针、冷冻电子显微镜——由提议的基于染料的单分子相关光增强
电子显微镜 (smCLEM) – 我们预计,在适当的情况下,还可以进行分子动力学模拟。
这些研究有可能改变我们对 RNA 结构与功能关系的理解
概述,以及 RNA 结构如何控制细胞基因表达机器的功能。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
NILS G WALTER其他文献
NILS G WALTER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('NILS G WALTER', 18)}}的其他基金
The RNA nanomachines of the gene expression machinery dissected at the single molecule level
在单分子水平上剖析基因表达机器的RNA纳米机器
- 批准号:
10390477 - 财政年份:2019
- 资助金额:
$ 84.78万 - 项目类别:
Administrative Supplement for a Cytosurge FluidFM OMNIUM instrument: The RNA nanomachines of the gene expression machinery dissected at the single molecule level
Cytosurge FluidFM OMNIUM 仪器的行政补充:在单分子水平上解剖的基因表达机器的 RNA 纳米机器
- 批准号:
10797186 - 财政年份:2019
- 资助金额:
$ 84.78万 - 项目类别:
Administrative Supplement for a Turnkey Fluorescence Microscope: Riboswitch mechanism unraveled at the single molecule level
交钥匙荧光显微镜的管理补充:在单分子水平上揭示核糖开关机制
- 批准号:
9894327 - 财政年份:2019
- 资助金额:
$ 84.78万 - 项目类别:
The RNA nanomachines of the gene expression machinery dissected at the single molecule level
在单分子水平上剖析基因表达机器的RNA纳米机器
- 批准号:
10613420 - 财政年份:2019
- 资助金额:
$ 84.78万 - 项目类别:
Single-molecule counting of cancer biomarker miRNAs in human biofluids
人体生物体液中癌症生物标志物 miRNA 的单分子计数
- 批准号:
9233284 - 财政年份:2017
- 资助金额:
$ 84.78万 - 项目类别:
Cotranscriptional folding of single riboswitches
单个核糖开关的共转录折叠
- 批准号:
9079585 - 财政年份:2016
- 资助金额:
$ 84.78万 - 项目类别:
Cotranscriptional folding of single riboswitches
单个核糖开关的共转录折叠
- 批准号:
9357619 - 财政年份:2016
- 资助金额:
$ 84.78万 - 项目类别:
HCV biology and inhibition visualized at the single molecule level
HCV 生物学和抑制在单分子水平上可视化
- 批准号:
8641463 - 财政年份:2013
- 资助金额:
$ 84.78万 - 项目类别:
HCV biology and inhibition visualized at the single molecule level
HCV 生物学和抑制在单分子水平上可视化
- 批准号:
8785654 - 财政年份:2013
- 资助金额:
$ 84.78万 - 项目类别:
Spliceosome Mechanism Dissected at the Single Molecule Level
单分子水平剖析剪接体机制
- 批准号:
8415518 - 财政年份:2012
- 资助金额:
$ 84.78万 - 项目类别:
相似国自然基金
水稻细菌性条斑病菌新型A-to-I RNA编辑编辑酶的鉴定与蛋白定向进化
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
微流控单细菌RNA测序技术的开发及应用于大肠杆菌耐药机制的研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
RNA分子伴侣HtpG调控细菌整合子捕获外源基因盒新机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
沙门菌小RNA CpxQ抑制鞭毛基因表达与细菌运动性的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
鮸鱼长链非编码RNA MRL调控MyD88介导的抗细菌信号通路的分子机制
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Structure of the SARS-CoV-2 Nucleocapsid: building block to viral capsid
SARS-CoV-2 核衣壳的结构:病毒衣壳的构建模块
- 批准号:
10728253 - 财政年份:2023
- 资助金额:
$ 84.78万 - 项目类别:
RNA regulation associated with mcr11-abmR locus in M. tuberculosis
结核分枝杆菌中与 mcr11-abmR 位点相关的 RNA 调控
- 批准号:
10884585 - 财政年份:2023
- 资助金额:
$ 84.78万 - 项目类别:
New roles of IFN-inducible OAS proteins in innate immune defense against bacterial infections
IFN诱导的OAS蛋白在针对细菌感染的先天免疫防御中的新作用
- 批准号:
10649771 - 财政年份:2023
- 资助金额:
$ 84.78万 - 项目类别:
Host tRNA-derived small RNAs (tsRNAs) mediate interactions between host and oral microbes
宿主 tRNA 衍生的小 RNA (tsRNA) 介导宿主和口腔微生物之间的相互作用
- 批准号:
10446416 - 财政年份:2022
- 资助金额:
$ 84.78万 - 项目类别: