PERM in Cardiac Function
PERM 对心脏功能的影响
基本信息
- 批准号:9917489
- 负责人:
- 金额:$ 39.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:AblationAddressAgeAnimal ModelBiochemicalBioenergeticsBiogenesisBiologyBreedingCardiacCardiac MyocytesCell RespirationChronicComplexCoronaryDataDevelopmentDilated CardiomyopathyDiseaseERR1 proteinEnergy MetabolismEstrogen Nuclear ReceptorEvolutionFutureGene ExpressionGenesGenetic TranscriptionHandHeartHeart DiseasesHeart MitochondriaHeart failureHumanHypertrophyIschemiaKnock-outLeadLearningLigationMediatingMetabolicMetabolic PathwayMetabolismMicroscopyMitochondriaMitochondrial DNAModelingMolecularMorbidity - disease rateMusMuscleMuscle FibersMuscle functionMutationMyocardialMyocardial InfarctionMyocardial IschemiaMyocardiumNuclearOrganismOrphanOxygenPPAR gammaPathway interactionsPatientsPhysiologicalPhysiologyPlayProductionProteinsPublishingReceptor SignalingRegulationReperfusion InjuryReperfusion TherapyRoleSignal TransductionSkeletal MuscleStressStriated MusclesTestingTissuesTransgenic OrganismsWorkbasecardiogenesiscardioprotectionconstrictionemerging adultestrogen-related receptorgenome-wide analysisheart functionheart metabolismhemodynamicshuman modelimprovedin vivoinnovationischemic cardiomyopathyischemic injurymetabolic abnormality assessmentmetabolomicsmitochondrial dysfunctionmortalitymouse modelmuscle metabolismmyocardial damagenew therapeutic targetnovelnovel strategiesnovel therapeuticsoverexpressionoxidative damagepressurepreventreduce symptomsrespiratoryresponsetranscription factor
项目摘要
Cardiac contraction requires a high and reliable flux of ATP as energetic deficiencies lead to disease, as seen
in humans with mutations in mitochondrial DNA or nuclear-encoded respiratory genes. This is supported by
mouse models with mutations in genes of oxidative metabolism. Cardiac energy metabolism and, in particular,
the high capacity for ATP production are controlled by a network of transcriptional regulators, including the
coactivators PGC-1 and PGC-1, and the orphan nuclear receptors ERR and ERR. This network regulates
genes important for mitochondrial biogenesis, oxidative metabolism and thus contraction of cardiac myocytes
(CM). PGC-1/ ERR complexes act directly on many target genes, but also activate downstream transcription
factors that amplify and/or extend their scope of action. Elucidation of such PGC-1/ERR downstream effectors
can reveal novel molecules that impact heart bioenergetics and that could be used to beneficially modify
cardiac energy state. Here, we will elucidate the role of a novel gene, PERM1, in cardiac energy
metabolism. We identified it as a gene induced by PGC-1/ and ERR//and found it expressed
specifically in tissues with high-energy demand, such as heart and skeletal muscle, and induced in vivo by
signals known to activate PGC-1. We hypothesize that PERM1 acts with PGC-1 and ERR factors in
controlling the expression of genes important for mitochondrial biogenesis and ATP production,
thereby protecting the heart from heart failure induced by pressure overload and ischemia reperfusion
injury. Three aims will test this hypothesis: Aim 1. Study of the metabolic pathways regulated by Perm1 in
cardiomyocytes (CM). This aim will study metabolic pathways regulated by Perm1 in cultured CM to evaluate
the hypothesis that Perm1 modulates Mito biogenesis and cellular metabolic pathways in the CM. It will pursue
the involvement of PGC-1/ERR in Perm1 function, and also evaluate mechanism(s) by which Perm1
modulates PGC-1/ERR activity using directed and unbiased approaches, including metabolomics. Aim 2.
Determine the role of Perm1 in pressure overload-induced HF. We will focus on the role of Perm1 in the
heart subjected to hemodynamic stress, and assess its role as the heart undergoes evolution from
compensated hypertrophy to HF. For this we use mouse models (in hand) which direct CM-specific
overexpression and ablation (knockout (KO)) of Perm1 expression – (termed Perm1cTg and Perm1cKO,
respectively). Aim 3. Evaluate the role of Perm1 in providing cardiac protection from deleterious effects
of ischemia and ischemia-reperfusion (IR) injury. We will study the role of Perm1 in ischemic injury also
using our unique mouse models, given the hypothesis that Perm1cTG-mediated overexpression will be
cardioprotective in the ischemic heart, while Perm1cKO will produce deleterious responses in ischemic-
challenged hearts. We expect this work to define PERM1 as a regulator of cellular bioenergetics and
potentially provide a new target for therapeutic pathways that are applicable to treatment of heart failure.
心脏收缩需要高且可靠的 ATP 通量,因为能量不足会导致疾病,如图所示
在线粒体 DNA 或核编码呼吸基因突变的人类中,这一点得到了支持。
具有氧化代谢基因突变的小鼠模型,特别是心脏能量代谢基因突变的小鼠模型。
ATP 的高生产能力由转录调节因子网络控制,包括
共激活因子 PGC-1 和 PGC-1,以及孤儿核受体 ERR 和 ERR 该网络进行调节。
对线粒体生物发生、氧化代谢以及心肌细胞收缩很重要的基因
(CM)。PGC-1/ERR 复合物直接作用于许多靶基因,但也激活下游转录。
阐明此类 PGC-1/ERR 下游效应子的因素。
可以揭示影响心脏生物能学的新分子,并可用于有益地改变
在这里,我们将阐明一个新基因 PERM1 在心脏能量中的作用。
我们将其鉴定为由 PGC-1α/β 和 ERRβ/β/β 诱导的基因,并发现它表达。
特别是在具有高能量需求的组织中,例如心脏和骨骼肌,并在体内诱导
已知激活 PGC-1 的信号我们认为 PERM1 与 PGC-1 和 ERR 因子一起作用。
控制对线粒体生物发生和 ATP 产生重要的基因表达,
保护心脏免受压力超负荷和缺血再灌注引起的心力衰竭
三个目标将检验这一假设: 目标 1. 研究 Perm1 调节的代谢途径。
该目标将研究培养的 CM 中 Perm1 调节的代谢途径以进行评估。
Perm1 调节 CM 中 Mito 生物发生和细胞代谢途径的假设。
PGC-1/ERR 在 Perm1 功能中的参与,并评估 Perm1 的机制
使用定向和公正的方法(包括代谢组学目标 2)调节 PGC-1/ERR 活性。
确定 Perm1 在压力过载引起的 HF 中的作用 我们将重点关注 Perm1 在压力过载引起的 HF 中的作用。
心脏承受血流动力学压力,并评估其在心脏经历进化过程中的作用
为此,我们使用指导 CM 特异性的小鼠模型(手持)。
Perm1 表达的过度表达和消除(敲除 (KO))——(称为 Perm1cTg 和 Perm1cKO,
目标 3. 评估 Perm1 在保护心脏免受有害影响方面的作用
我们还将研究 Perm1 在缺血性损伤中的作用。
使用我们独特的小鼠模型,假设 Perm1cTG 介导的过度表达将
对缺血性心脏具有心脏保护作用,而 Perm1cKO 会在缺血性心脏中产生有害反应
我们期望这项工作将 PERM1 定义为细胞生物能量学的调节剂和
可能为适用于心力衰竭治疗的治疗途径提供新的靶点。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yoshitake Cho其他文献
Yoshitake Cho的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yoshitake Cho', 18)}}的其他基金
The role of obscurin and Obsl1 as key determinants for diastolic function
Obscurin 和 Obsl1 作为舒张功能关键决定因素的作用
- 批准号:
10554438 - 财政年份:2021
- 资助金额:
$ 39.38万 - 项目类别:
The role of obscurin and Obsl1 as key determinants for diastolic function
Obscurin 和 Obsl1 作为舒张功能关键决定因素的作用
- 批准号:
10334533 - 财政年份:2021
- 资助金额:
$ 39.38万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
A Novel VpreB1 Anti-body Drug Conjugate for the Treatment of B-Lineage Acute Lymphoblastic Leukemia/Lymphoma
一种用于治疗 B 系急性淋巴细胞白血病/淋巴瘤的新型 VpreB1 抗体药物偶联物
- 批准号:
10651082 - 财政年份:2023
- 资助金额:
$ 39.38万 - 项目类别:
Improving Glioma Immunotherapy Efficacy by Regulating Tumor Inflammation
通过调节肿瘤炎症提高胶质瘤免疫治疗效果
- 批准号:
10750788 - 财政年份:2023
- 资助金额:
$ 39.38万 - 项目类别:
Reversal of Age-Associated Damage in the Planarian Germline
涡虫种系中年龄相关损伤的逆转
- 批准号:
10606234 - 财政年份:2023
- 资助金额:
$ 39.38万 - 项目类别:
Role of glia in LRRK2 mediated dopaminergic neuron degeneration
胶质细胞在 LRRK2 介导的多巴胺能神经元变性中的作用
- 批准号:
10602889 - 财政年份:2023
- 资助金额:
$ 39.38万 - 项目类别:
Elucidation of the mechanism of disease of VEXAS Syndrome
阐明VEXAS综合征的发病机制
- 批准号:
10752251 - 财政年份:2023
- 资助金额:
$ 39.38万 - 项目类别: