Elucidating the role of cardiac myofibroblasts on matrix and vasculature remodeling
阐明心肌成纤维细胞对基质和脉管系统重塑的作用
基本信息
- 批准号:9909793
- 负责人:
- 金额:$ 4.07万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-16 至 2023-05-15
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAffectAgingAortic Valve StenosisApoptosisAreaArteriesArtificial HeartAtomic Force MicroscopyAutomobile DrivingBiochemicalBiometryBlood VesselsCardiacCardiac MyocytesCardiovascular PhysiologyCause of DeathCellsCharacteristicsChemical StructureChemicalsChemistryCollagenCollagen FiberConfocal MicroscopyContractsCoronaryCuesDataDepositionDiseaseEndothelial CellsEndotheliumEngineeringEnvironmentExtracellular MatrixExtracellular SpaceFibroblastsFibrosisFreeze DryingGelGene ActivationGenerationsGenetic ModelsGoalsHeartHeart DiseasesHeart failureHypertensionHypertrophyImageIn VitroInjuryLectinLeftLengthLiquid ChromatographyLongitudinal StudiesMAP2K6 geneMapsMeasurementMeasuresMechanicsMediatingMethodsModelingMolecularMusMyocardial InfarctionMyofibroblastNatureOperative Surgical ProceduresOrganPathway interactionsPerfusionPerivascular FibrosisPhenotypePhosphotransferasesPhysiologicalPhysiologyPreparationProcessPropertyProtein KinaseProteomicsPumpRegulationRoleSignal TransductionStimulusStressStretchingStructureSystemTherapeuticThree-Dimensional ImageTimeTissuesTractionTransgenesTransgenic MiceVascular remodelingVentricularWorkblebbistatincell growthcell motilitycell typecombinatorialcoronary fibrosisdensityexperimental studyextracellularheart functionimage reconstructionin vitro Modelin vivoin vivo Modelinterstitialknock-downmathematical modelmechanical propertiesmicroscopic imagingmigrationoverexpressionpreservationpressureresponsescaffoldsecond harmonictandem mass spectrometrytwo-photon
项目摘要
In every form of heart disease, the secretion of extracellular matrix (ECM) by activated
fibroblasts, or myofibroblasts, results in cardiac fibrosis. Fibrosis impedes compliance and
pumping function, ultimately leading to heart failure due to left ventricular dilation and loss of
mechanical function. Little is known about endothelial cell and vessel adaptations to the
environment or how local mechanics and chemistry impact vessel structure and flow in vivo.
Combinatorial fibroblast and ECM mechanical and chemical crosstalk with endothelial cells are
unknown. Moreover, in vitro models aiming to assess vascular adaptations to an extracellular
environment lack physiologically relevant ECMs and instead provide exogenous ECM
components to optimize control of variables. A system for in vivo, cell-specific phenotypic
manipulation will allow for controlled perturbations at an organ level while maintaining relevant,
native ECM remodeling over time. Thus, I propose to examine transgenic mice with cardiac
fibroblast-specific overexpression of a constitutively active mitogen-activated protein kinase
kinase 6 (MKK6) to study vascular remodeling with respect to the fibroblasts and the ECM they
secrete. These mice were previously shown to develop interstitial and perivascular fibrosis after
16-20 weeks of the MKK6 gene activation without an injury stimulus, serving as an effective
model of the interstitial fibrosis preserved across the results of aging, hypertension, aortic
stenosis, and other diseases of the heart. Importantly, the remodeling seen in these diseases
does not involve a massive loss of cardiomyocytes, as in a myocardial infarction, but rather a
conserved fibroblast phenotypic change, an altered extracellular space, and/or restricted
vascular flow over time. Similarly, manipulation of the MKK6 pathway allows for overexpression
or knockdown of cardiac fibroblast activation, corresponding to increased ECM or the inability to
secrete ECM as a response to a stimulus, respectively. First, I propose to study the
biochemical, structural, and mechanical properties of the ECM as well as the macro- and
microvascular responses to activated, quiescent, and control cardiac fibroblast phenotypes in
vivo. Second, three-dimensional vessel-like structures with controlled fibroblasts and ECMs will
be engineered as in vitro platforms to define the molecular regulators of vascular remodeling
induced by microenvironmental cues. The effects of combined signaling will be resolved by
global characterization along with a reductionist method. The goal of this work is to inform heart
therapies by providing targets for steering cardiac vascular remodeling.
在各种形式的心脏病中,细胞外基质 (ECM) 的分泌
成纤维细胞或肌成纤维细胞导致心脏纤维化。纤维化妨碍依从性和
泵血功能,最终因左心室扩张和丧失而导致心力衰竭
机械功能。关于内皮细胞和血管对环境的适应知之甚少。
环境或局部力学和化学如何影响体内血管结构和流动。
成纤维细胞和 ECM 与内皮细胞的机械和化学串扰的组合
未知。此外,体外模型旨在评估血管对细胞外的适应
环境缺乏生理相关的 ECM,而是提供外源 ECM
组件来优化变量的控制。体内细胞特异性表型系统
操纵将允许在器官水平上进行受控扰动,同时保持相关性,
随着时间的推移,原生 ECM 重塑。因此,我建议检查具有心脏功能的转基因小鼠
组成型活性丝裂原激活蛋白激酶的成纤维细胞特异性过表达
激酶 6 (MKK6) 用于研究成纤维细胞及其 ECM 的血管重塑
分泌。先前显示这些小鼠在接受治疗后会出现间质和血管周围纤维化。
在没有损伤刺激的情况下,MKK6 基因激活 16-20 周,作为有效的
间质纤维化模型保留了衰老、高血压、主动脉疾病的结果
狭窄和其他心脏疾病。重要的是,这些疾病中出现的重塑
并不像心肌梗死那样涉及心肌细胞的大量损失,而是
保守的成纤维细胞表型变化、细胞外空间改变和/或受限
血管流量随时间的变化。类似地,操纵 MKK6 通路可实现过度表达
或心脏成纤维细胞活化的敲低,对应于 ECM 增加或无法
分别分泌 ECM 作为对刺激的反应。首先,我建议研究
ECM 的生化、结构和机械特性以及宏观和
微血管对激活、静止和控制心脏成纤维细胞表型的反应
体内。其次,具有受控成纤维细胞和 ECM 的三维血管样结构将
被设计为体外平台来定义血管重塑的分子调节剂
由微环境因素诱发。组合信号的影响将通过以下方式解决
全局表征以及还原论方法。这项工作的目标是让心脏了解
通过提供指导心脏血管重塑的目标来进行治疗。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
EMILY OLSZEWSKI其他文献
EMILY OLSZEWSKI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('EMILY OLSZEWSKI', 18)}}的其他基金
Elucidating the role of cardiac myofibroblasts on matrix and vasculature remodeling
阐明心肌成纤维细胞对基质和脉管系统重塑的作用
- 批准号:
10469639 - 财政年份:2020
- 资助金额:
$ 4.07万 - 项目类别:
Elucidating the role of cardiac myofibroblasts on matrix and vasculature remodeling
阐明心肌成纤维细胞对基质和脉管系统重塑的作用
- 批准号:
10431762 - 财政年份:2020
- 资助金额:
$ 4.07万 - 项目类别:
Elucidating the role of cardiac myofibroblasts on matrix and vasculature remodeling
阐明心肌成纤维细胞对基质和脉管系统重塑的作用
- 批准号:
10469639 - 财政年份:2020
- 资助金额:
$ 4.07万 - 项目类别:
相似国自然基金
来源和老化过程对大气棕碳光吸收特性及环境气候效应影响的模型研究
- 批准号:42377093
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
任务切换影响相继记忆的脑机制:基于认知老化的视角
- 批准号:32360201
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
光老化微塑料持久性自由基对海洋中抗生素抗性基因赋存影响机制
- 批准号:42307503
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
生物炭介导下喀斯特耕地土壤微塑料老化及其对Cd有效性的影响机制
- 批准号:42367031
- 批准年份:2023
- 资助金额:34 万元
- 项目类别:地区科学基金项目
生物炭原位修复底泥PAHs的老化特征与影响机制
- 批准号:42307107
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Project 3: 3-D Molecular Atlas of cerebral amyloid angiopathy in the aging brain with and without co-pathology
项目 3:有或没有共同病理的衰老大脑中脑淀粉样血管病的 3-D 分子图谱
- 批准号:
10555899 - 财政年份:2023
- 资助金额:
$ 4.07万 - 项目类别:
4D Flow MRI in Assessment of True Severe Low-Gradient Aortic Stenosis
4D Flow MRI 评估真正的严重低梯度主动脉瓣狭窄
- 批准号:
10735953 - 财政年份:2023
- 资助金额:
$ 4.07万 - 项目类别:
Mitochondrial dysfunction and tau pathology in Alzheimer's disease
阿尔茨海默病中的线粒体功能障碍和 tau 病理学
- 批准号:
10805120 - 财政年份:2023
- 资助金额:
$ 4.07万 - 项目类别:
Characterizing Individuals' Cognitive Maps of their Village Social Networks
表征个人对其村庄社交网络的认知图
- 批准号:
10651157 - 财政年份:2023
- 资助金额:
$ 4.07万 - 项目类别: