Quantitative Imaging for Assessing Breast Cancer Response to Treatment
用于评估乳腺癌治疗反应的定量成像
基本信息
- 批准号:9769672
- 负责人:
- 金额:$ 62.73万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdoptionAdverse effectsAmerican College of Radiology Imaging NetworkAwardBenchmarkingBenignBreastBreast Cancer PatientBreast Cancer TreatmentBreast Magnetic Resonance ImagingCellularityClinicalClinical TrialsCollaborationsDataDiagnosisDiagnosticDiffusionDiffusion Magnetic Resonance ImagingEffectivenessError SourcesEvaluationFundingGoalsGrantImageImage EnhancementImaging PhantomsIn complete remissionIndustrializationInstitutesLesionMagnetic Resonance ImagingMalignant - descriptorMeasurementMeasuresMethodsMichiganModelingModificationNeoadjuvant TherapyNeurologicOperative Surgical ProceduresOutcomePathologicPatientsPerformancePerfusionPhysiologic pulsePrecision therapeuticsProcessProcess AssessmentProtocols documentationQuality ControlRecurrenceReproducibilityResearchResolutionRiskScanningSiteStandardizationSystemTechniquesTechnologyTestingTimeUniversitiesVendorWashingtonWorkbasebiomarker performancechemotherapyclinical implementationclinical practicecohortcontrast enhanceddata acquisitionimage registrationimaging biomarkerimaging modalityimprovedindividualized medicineindustry partnermalignant breast neoplasmpersonalized strategiesphase II trialpredicting responsepredictive modelingpreventprogramsquality assurancequantitative imagingresponsesurvival predictiontargeted agenttooltreatment responsetreatment strategytumortumor heterogeneity
项目摘要
Summary/Abstract
The goal of this project is to implement effective, imaging-based strategies combining DCE-MRI and DWI to
assess response for breast cancer patients receiving pre-operative (neoadjuvant) chemotherapy. This project
builds on the prior NCI Quantitative Imaging Network (QIN) U01 grant award CA151235 entitled “Quantitative
Imaging for Assessing Breast Cancer Response to Treatment” and addresses the needs for improved
accuracy, standardization and consistency of breast MRI to perform quantitative assessment of treatment
response across multiple clinical centers. The new QIN project will continue to advance quantitative MRI
methods in the context of the I-SPY 2 TRIAL, an adaptive Phase II trial of targeted agents for breast cancer.
We will use diagnostic models applied to the expanding I-SPY 2 cohorts to maximize the biomarker
performance of imaging measurements and to construct decision tools to enable rational strategies for
treatment modification. In prior work we developed and implemented image quality control and assessment
processes for breast diffusion-weighted MRI (DWI) that were utilized in the American College of Radiology
Imaging Network (ACRIN) trial 6698, an imaging sub-study of I-SPY 2 testing DWI for prediction of response.
Initial results showed excellent repeatability of apparent diffusion coefficient (ADC) measurements using a
standardized 4 b-value protocol, and change in ADC with treatment was found to be predictive of pathologic
complete response (pCR). In parallel efforts, we worked with QIN collaborators at University of Michigan and
industrial partners to develop gradient non-linearity correction and B0 inhomogeneity correction methods for
ADC quantification. We also collaborated with the National Institute of Standards and Technology (NIST) to
develop a universal breast MRI phantom for standardization of breast MRI in clinical trials. The new U01
project will evaluate these methods on the multiple vendor platforms in I-SPY 2 with particular focus on
maximizing the combined performance of breast DCE-MRI and DWI. Under Specific Aim 1, we propose to
gain performance improvements by implementing more advanced DWI pulse sequence techniques (multi
b-value DWI and high spatial resolution DWI) and correcting known systematic errors (gradient non-linearity
and B0 inhomogeneity). We will additionally implement a phantom-based quality assurance process to evaluate
pulse sequence performance at all sites, with the goal of identifying and correcting platform bias and variability
in ADC measurement and establishing quality benchmarks for data acceptance. Specific Aim 2 will focus on
improving ADC quantitation by incorporating co-registration of DWI to dynamic contrast-enhanced (DCE)
images, as well as automated segmentation techniques to measure heterogeneity in tumor ADC. We anticipate
that these collective improvements in image acquisition, standardization, use of quality benchmarks and pixel-
based metrics will lead to overall improvements in ADC measurement. The improved metrics will be tested in
predictive models for pathologic response and survival in I-SPY 2.
摘要/摘要
该项目的目标是实施有效的、基于成像的策略,结合 DCE-MRI 和 DWI
评估接受术前(新辅助)化疗的乳腺癌患者的反应。
建立在之前的 NCI 定量成像网络 (QIN) U01 资助奖 CA151235 的基础上,题为“定量
用于评估乳腺癌治疗反应的成像”并满足改进的需求
乳房 MRI 的准确性、标准化和一致性,用于对治疗进行定量评估
新的 QIN 项目将继续推进定量 MRI 的发展。
I-SPY 2 TRIAL 是一项针对乳腺癌靶向药物的适应性 II 期试验。
我们将使用应用于扩展 I-SPY 2 队列的诊断模型,以最大限度地提高生物标志物
成像测量的性能并构建决策工具以实现合理的策略
在之前的工作中,我们开发并实施了图像质量控制和评估。
美国放射学院使用的乳腺弥散加权 MRI (DWI) 流程
成像网络 (ACRIN) 试验 6698,I-SPY 2 的成像子研究,测试 DWI 以预测反应。
初步结果表明,表观扩散系数 (ADC) 测量具有出色的重复性
标准化 4 b 值方案,并且发现治疗后 ADC 的变化可预测病理变化
与此同时,我们与密歇根大学的 QIN 合作者进行了合作。
工业合作伙伴开发梯度非线性校正和B0不均匀性校正方法
我们还与美国国家标准与技术研究所 (NIST) 合作进行 ADC 定量。
开发通用乳腺 MRI 模型,用于临床试验中乳腺 MRI 的标准化新 U01。
项目将在 I-SPY 2 的多个供应商平台上评估这些方法,特别关注
在具体目标 1 下,我们建议最大限度地提高乳腺 DCE-MRI 和 DWI 的综合性能。
通过实施更先进的 DWI 脉冲序列技术(多
b值DWI和高空间分辨率DWI)并校正已知的系统误差(梯度非线性
和 B0 不均匀性)我们将另外实施基于模型的质量保证流程来评估。
所有站点的脉冲序列性能,目的是识别和纠正平台偏差和变异性
ADC 测量和建立数据接受的质量基准的具体目标 2 将重点关注。
通过将 DWI 联合配准与动态对比增强 (DCE) 相结合来改进 ADC 定量
图像,以及测量肿瘤 ADC 异质性的自动分割技术。
这些在图像采集、标准化、质量基准和像素使用方面的集体改进
基于的指标将导致 ADC 测量的整体改进。改进的指标将在 中进行测试。
I-SPY 2 中病理反应和生存的预测模型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nola M. Hylton-Watson其他文献
Nola M. Hylton-Watson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nola M. Hylton-Watson', 18)}}的其他基金
Dedicated breast PET and MRI for characterization of breast cancer and its response to therapy
专用乳腺 PET 和 MRI,用于表征乳腺癌及其对治疗的反应
- 批准号:
10092115 - 财政年份:2019
- 资助金额:
$ 62.73万 - 项目类别:
Quantitative Imaging for Assessing Breast Cancer Response to Treatment
用于评估乳腺癌治疗反应的定量成像
- 批准号:
10478050 - 财政年份:2018
- 资助金额:
$ 62.73万 - 项目类别:
Quantitative Imaging for Assessing Breast Cancer Response to Treatment
用于评估乳腺癌治疗反应的定量成像
- 批准号:
10241938 - 财政年份:2018
- 资助金额:
$ 62.73万 - 项目类别:
Project 2: Non-invasive imaging metrics to optimize early treatment switching decisions and prognostic modeling of long-term outcomes
项目 2:非侵入性成像指标,用于优化早期治疗转换决策和长期结果的预后建模
- 批准号:
10628610 - 财政年份:2017
- 资助金额:
$ 62.73万 - 项目类别:
Project 02 - Non-invasive imaging metrics for determining non-response
项目 02 - 用于确定无反应的非侵入性成像指标
- 批准号:
10013138 - 财政年份:2017
- 资助金额:
$ 62.73万 - 项目类别:
Project 02 - Non-invasive imaging metrics for determining non-response
项目 02 - 用于确定无反应的非侵入性成像指标
- 批准号:
10249155 - 财政年份:2017
- 资助金额:
$ 62.73万 - 项目类别:
Quantitative Imaging for Assessing Breast Cancer Response to Treatment
用于评估乳腺癌治疗反应的定量成像
- 批准号:
8719738 - 财政年份:2011
- 资助金额:
$ 62.73万 - 项目类别:
Quantitative Imaging for Assessing Breast Cancer Response to Treatment
用于评估乳腺癌治疗反应的定量成像
- 批准号:
8537122 - 财政年份:2011
- 资助金额:
$ 62.73万 - 项目类别:
Quantitative Imaging for Assessing Breast Cancer Response to Treatment
用于评估乳腺癌治疗反应的定量成像
- 批准号:
8108104 - 财政年份:2011
- 资助金额:
$ 62.73万 - 项目类别:
Quantitative Imaging for Assessing Breast Cancer Response to Treatment
用于评估乳腺癌治疗反应的定量成像
- 批准号:
8338834 - 财政年份:2011
- 资助金额:
$ 62.73万 - 项目类别:
相似国自然基金
山丘区农户生计分化对水保措施采用的影响及其调控对策
- 批准号:42377321
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
采用新型视觉-电刺激配对范式长期、特异性改变成年期动物视觉系统功能可塑性
- 批准号:32371047
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
金融科技驱动的供应链库存与融资策略和技术采用合作机制研究
- 批准号:72371117
- 批准年份:2023
- 资助金额:39 万元
- 项目类别:面上项目
政策激励、信息传递与农户屋顶光伏技术采用提升机制研究
- 批准号:72304103
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
金属有机骨架材料在环境VOCs处理过程中采用原位电子顺磁共振自旋探针检测方法的研究
- 批准号:22376147
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
iAGREE: A Multi- Center, Networked Patient Consent Study
iAGREE:一项多中心、网络化患者同意研究
- 批准号:
10748211 - 财政年份:2023
- 资助金额:
$ 62.73万 - 项目类别:
Pharmacogenomics Workflow: Identifying Biomarkers and Treatment Options
药物基因组学工作流程:识别生物标志物和治疗方案
- 批准号:
10819933 - 财政年份:2023
- 资助金额:
$ 62.73万 - 项目类别:
Augmenting Pharmacogenetics with Multi-Omics Data and Techniques to Predict Adverse Drug Reactions to NSAIDs
利用多组学数据和技术增强药物遗传学,预测 NSAID 的药物不良反应
- 批准号:
10748642 - 财政年份:2023
- 资助金额:
$ 62.73万 - 项目类别:
Understanding the short- and long-term effects of the COVID-19 pandemic on the overdose crisis
了解 COVID-19 大流行对药物过量危机的短期和长期影响
- 批准号:
10739492 - 财政年份:2023
- 资助金额:
$ 62.73万 - 项目类别:
Intersectional Stigma Reduction for Tajik Migrants Who Inject Drugs
减少注射毒品的塔吉克移民的跨部门耻辱
- 批准号:
10755435 - 财政年份:2023
- 资助金额:
$ 62.73万 - 项目类别: