Mechanisms of Pneumococcal Adherence
肺炎球菌粘附机制
基本信息
- 批准号:7585069
- 负责人:
- 金额:$ 32.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-08-01 至 2013-07-31
- 项目状态:已结题
- 来源:
- 关键词:AdherenceAntibiotic ResistanceBacteriaBacterial AdhesinsBindingBinding SitesBiochemicalC-terminalCell surfaceCessation of lifeClinicalComplementConflict (Psychology)Conjugate VaccinesDataDevelopmentDiseaseEnzymesEpithelialEpithelial CellsEpithelial Receptor CellExoglycosidasesGalactosidaseGlycoside HydrolasesGoalsHumanKnowledgeLigandsLipidsMeasuresMediatingMolecularMutagenesisN-terminalNeuraminidaseOtitis MediaPathogenesisPneumococcal InfectionsPolysaccharidesPreventiveProtein RegionProteinsRecombinantsReportingRespiratory SystemRespiratory tract structureRoleScanningSerotypingSite-Directed MutagenesisStreptococcus pneumoniaeStructureSurfaceTechniquesTherapeuticVaccinesX-Ray Crystallographyairway epitheliumbacterial adhesin receptorcapsulein vivoinnovationinsightnovelpathogenpreventpublic health relevancereceptor
项目摘要
DESCRIPTION (provided by applicant): S. pneumoniae (S.p.) is an important human pathogen causing more than 1 million deaths per year world-wide. In addition, S.p is responsible for an estimated 7 million cases of otitis media each year in the US alone. The currently available conjugate vaccine includes 7 of the 90 known capsule types. While this vaccine has significantly reduced invasive disease and colonization caused by vaccine serotypes, there has been an unexpected increase in both invasive disease and colonization caused by non-vaccine serotypes. In addition, the vaccine does not effectively protect against otitis media. Colonization of the respiratory tract is an essential precursor to disease. Despite the importance of adherence to colonization and, therefore, pathogenesis, the mechanisms by which S.p adheres to airway epithelia remain unclear. We have identified a novel exoglycosidase-dependent adherence mechanism requiring the S.p. neuraminidase, NanA, and 2- galactosidase, BgaA. This mechanism is relevant to adherence of recent clinical isolates and S.p. adherence to human primary epithelial cells, suggesting that it will be relevant in vivo. Our preliminary data demonstrate that while NanA exposes a receptor for adherence, BgaA acts as an adhesin. To further define this mechanism of adherence we have 2 Specific Aims: 1) Elucidate the BgaA binding site. We will define the BgaA region that mediates adherence to human epithelial cells. BgaA is the 2nd largest protein expressed by S.p. and possesses a C-terminal region of unknown function. We will perform molecular and structural analyses to elucidate how BgaA acts as an adhesin. Different regions of the protein will be expressed and used in binding and inhibition studies to identify the region(s) that mediate(s) adherence. The residues that contribute to binding will subsequently be identified by mutagenesis scanning. Structuring of BgaA will be utilized as an alternative approach to identify the binding site and identify the function of the C-terminal region of the protein. 2) Identify the BgaA receptor on the epithelial cell surface. The initial attachment of S.p. has been proposed to occur through a glycan receptor exposed by neuraminidase; however, the adhesin is unknown and there have been conflicting reports of different receptors. We will use a comprehensive range of techniques to determine if BgaA binds to a glycan and if this is structure in the context of a protein or lipid. Following identification of the receptor we will further characterize its interaction with BgaA. The successful completion of these Specific Aims will provide an increased understanding of this mechanism of S.p. adherence. This knowledge is likely to contribute significantly to the long-term goal of developing more effective vaccines and/or treatments to reduce the burden of S.p. disease. PUBLIC HEALTH RELEVANCE: Colonization of the human airway is an essential precursor to pneumococcal disease; however the mechanisms by which the bacteria initially attach to the airway are poorly understood. This study will characterize a novel glycosidase-dependent mechanism of adherence. We will identify the bacterial adhesin and the receptor on the epithelial surface. Our increased understanding of pneumococcal adherence will help us achieve the longer term goal of developing a more effective vaccine or treatment to reduce the burden of pneumococcal disease.
描述(由申请人提供):S。肺炎(S.P.)是一种重要的人类病原体,每年在全球造成超过100万人死亡。此外,仅在美国,S.P每年估计每年有700万例中耳炎。当前可用的共轭疫苗包括90种已知胶囊类型中的7种。尽管该疫苗已大大降低了由疫苗血清型引起的侵入性疾病和定殖,但由于非疫苗血清型引起的侵入性疾病和定殖的意外增加。此外,该疫苗无法有效预防中耳炎。呼吸道的定殖是疾病的重要先驱。尽管遵守定殖的重要性,因此是发病机理,但S.P遵守气道上皮的机制尚不清楚。我们已经确定了一种新型的外糖苷酶依赖性依从性机制,需要S.P.神经氨酸酶,NANA和2-半乳糖苷酶,BGAA。该机制与近期临床分离株和S.P.的依从性有关遵守人类原发性上皮细胞,表明它在体内将是相关的。我们的初步数据表明,尽管Nana暴露了依从性的受体,但BGAA充当粘附素。为了进一步定义这种依从性机制,我们有2个具体目标:1)阐明BGAA结合位点。我们将定义介导遵守人上皮细胞的BGAA区域。 BGAA是S.P.表达的第二大蛋白。并具有未知功能的C末端区域。我们将进行分子和结构分析,以阐明BGAA如何充当粘附素。蛋白质的不同区域将被表达并用于结合和抑制研究,以识别介导的粘附区域。随后将通过诱变扫描来鉴定有助于结合的残基。 BGAA的结构将被用作识别结合位点并识别蛋白质C末端区域的功能的替代方法。 2)识别上皮细胞表面上的BGAA受体。 S.P.的初始附件已经提出通过神经氨酸酶暴露的聚糖受体发生。但是,粘合剂是未知的,并且有不同受体的报道。我们将使用全面的技术范围来确定BGAA是否与聚糖结合,并且在蛋白质或脂质的背景下,这是否是结构。鉴定受体后,我们将进一步表征其与BGAA的相互作用。这些特定目标的成功完成将提供对S.P.这种机制的更多了解。坚持。这些知识可能会为开发更有效的疫苗和/或治疗方法的长期目标做出重大贡献,以减轻S.P.的负担。疾病。公共卫生相关性:人类气道的定殖是肺炎球菌疾病的重要先驱;但是,最初附着在气道上的细菌的机制知之甚少。这项研究将表征一种新型的糖苷酶依赖性依从性机制。我们将在上皮表面鉴定细菌粘附素和受体。我们对肺炎球菌依从性的越来越多的理解将有助于我们实现长期目标,即开发更有效的疫苗或治疗以减轻肺炎球菌疾病的负担。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Samantha Jane King其他文献
Samantha Jane King的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Samantha Jane King', 18)}}的其他基金
Defining a novel mechanism of adhesion present in multiple infective endocarditis causing species
定义多种感染性心内膜炎引起物种中存在的新粘连机制
- 批准号:
10598825 - 财政年份:2022
- 资助金额:
$ 32.4万 - 项目类别:
相似国自然基金
细菌生活方式介导汾河入黄口抗生素抗性基因的分布格局及驱动机制研究
- 批准号:32300115
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
腐殖酸对农业土壤中抗生素抗性细菌和抗性基因的影响及机制
- 批准号:42207026
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于激子与载流子行为调控的共价有机框架材料光催化处理水体中的抗生素抗性细菌/基因的机理研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
消毒剂协同选择公共设施表面细菌产生抗生素抗性的机制和风险
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
消毒剂协同选择公共设施表面细菌产生抗生素抗性的机制和风险
- 批准号:42277386
- 批准年份:2022
- 资助金额:53.00 万元
- 项目类别:面上项目
相似海外基金
The joint environment and periprosthetic joint infection
关节环境与假体周围感染
- 批准号:
10744580 - 财政年份:2023
- 资助金额:
$ 32.4万 - 项目类别:
An Integrated Catheter Dressing for Early Detection of Catheter-related Bloodstream Infections
用于早期检测导管相关血流感染的集成导管敷料
- 批准号:
10647072 - 财政年份:2023
- 资助金额:
$ 32.4万 - 项目类别:
Identification of bacterial strains for development of an oral probiotic aimed at increasing nitric oxide bioavailability
鉴定用于开发口服益生菌的菌株,旨在提高一氧化氮的生物利用度
- 批准号:
10666185 - 财政年份:2023
- 资助金额:
$ 32.4万 - 项目类别:
Novel therapeutics for treatment of catheter-associated UTI and depletion of the vaginal reservoir
治疗导管相关性尿路感染和阴道储库耗竭的新疗法
- 批准号:
10605022 - 财政年份:2023
- 资助金额:
$ 32.4万 - 项目类别:
Project 2: Discovery of novel C. difficile antigens using genetic and biochemical approaches
项目2:利用遗传和生化方法发现新的艰难梭菌抗原
- 批准号:
10625693 - 财政年份:2023
- 资助金额:
$ 32.4万 - 项目类别: