Regulation of mitochondrial morphodynamics in Toxoplasma gondii
弓形虫线粒体形态动力学的调控
基本信息
- 批准号:9896491
- 负责人:
- 金额:$ 39.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-03-03 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:AddressAffectAmino AcidsApicalApicomplexaAutomobile DrivingAuxinsBiochemistryBiological AssayBiologyBiotinylationCalciumCellsCessation of lifeCo-ImmunoprecipitationsComplexCouplingCytokinesisDevelopmentDiseaseDrug TargetingEconomic BurdenEnvironmentHomeostasisImageImmunocompromised HostIn VitroIndividualKnock-outLassoLeadLifeLife Cycle StagesLightLipidsLytic PhaseMapsMechanicsMediatingMembraneMicroscopyMitochondriaMolecularMolecular GeneticsMonitorMorphologyMutation AnalysisOrganellesParasitesPharmaceutical PreparationsPhenotypePhosphorylation SitePhysiologyPlasmodium falciparumPlayPopulationPositioning AttributePost-Translational Protein ProcessingProcessProteinsProteomicsRegulationResearchResistanceRoleShapesSiteSocietiesStretchingStructureSystemToxoplasmaToxoplasma gondiiToxoplasmosisTransmembrane DomainTubular formationYeastsbasecombatdaughter cellexperimental studyextracellularhealth economicshuman pathogenin vivomutantnovelnovel therapeuticspathogenprotein complexsegregationtissue cultureyeast two hybrid system
项目摘要
A unique feature of parasites of the phylum Apicomplexa, such as Toxoplasma gondii, is the presence of a
single tubular mitochondrion, which is essential for parasite survival and a validated drug target. Most studies
of the apicomplexan mitochondrion have focused on its biochemistry and physiology. By contrast little is known
about the machinery that controls mitochondrial division and that regulate its structure, information that would
be critical for a thorough exploration of the mitochondrion as a drug target. Toxoplasma's singular
mitochondrion is very dynamic and undergoes morphological changes throughout the parasite's life cycle
including during the transition from the intracellular to the extracellular environment. While inside a host cell the
mitochondrion is maintained in a lasso shape that stretches around the parasite periphery where it has regions
of coupling with the parasite pellicle, suggesting the presence of membrane contact sites. Promptly after exit
from the host cell, these contact sites disappear, and the mitochondrion collapses indicating that dynamic
membrane contact sites regulate the positioning of the mitochondrion. Neither the functional significance nor
the proteins needed for the contact between Toxoplasma's mitochondrion and pellicle are known. We have
discovered a novel protein, Fip1, that associates with the mitochondrion and that when knocked out the normal
morphology of the mitochondrion is severely affected. In intracellular fip1 knockout parasites the mitochondrion
is not in a lasso shape as seen in wildtype parasites, but instead it is collapsed. Additionally, proper
mitochondrial segregation is disrupted in the knockout parasites, resulting in parasites with no mitochondrion
and mitochondrial material outside of the parasites. These gross morphological changes are associated with a
significant reduction of parasite propagation and can be rescued by reintroduction of a wildtype copy of Fip1.
Accordingly, we hypothesize that Fip1 mediates contact between the mitochondrion and the parasite pellicle in
a regulatable fashion, and that the Fip1 dependent mitochondrial morphology and dynamics are critical for
parasite propagation. Through a combination of molecular genetics, microscopy and proteomics we will
address the functional relevance and the mechanics of the mitochondrial morphology. In aim one we will
conduct a thorough in vivo and in vitro phenotypic characterization of Fip1 mutant strains to determine the role
of Fip1 and mitochondrial shape in parasite viability. Aim two focuses on identifying and characterizing
components of the Fip1 complex that mediates the association of the mitochondrion with the periphery of the
parasites. Finally, in aim three we will determine the regulatory mechanisms that drive the mitochondrial
morphological changes as the parasite exits its host cell. In conjunction, these experiments will shed light onto
the molecular mechanisms driving and regulating the morphodynamics of the Toxoplasma mitochondrion. As
the mitochondrion of this important human pathogen is essential for its survival and a validated drug target, our
studies will uncover novel targets for the development on new therapeutics.
顶复门寄生虫(例如弓形虫)的一个独特特征是存在
单管状线粒体,对于寄生虫的生存和经过验证的药物靶点至关重要。大多数研究
顶端复合体线粒体的研究重点是其生物化学和生理学。相比之下,人们知之甚少
关于控制线粒体分裂和调节其结构的机制,这些信息
对于彻底探索线粒体作为药物靶点至关重要。弓形虫的独特之处
线粒体非常活跃,在寄生虫的整个生命周期中经历形态变化
包括从细胞内环境到细胞外环境的转变过程。当在宿主细胞内时
线粒体保持套索形状,围绕寄生虫外围延伸,其中有区域
与寄生虫薄膜的耦合,表明存在膜接触位点。退出后立即
从宿主细胞中,这些接触位点消失,线粒体崩溃,表明动态
膜接触位点调节线粒体的定位。既没有功能意义,也没有
弓形虫线粒体和表膜之间接触所需的蛋白质是已知的。我们有
发现了一种新的蛋白质,Fip1,它与线粒体相关,当敲除正常的线粒体时,
线粒体的形态受到严重影响。细胞内 fip1 敲除寄生虫线粒体
不像野生型寄生虫那样呈套索形状,而是折叠的。另外,适当
敲除寄生虫中的线粒体分离被破坏,导致寄生虫没有线粒体
以及寄生虫外部的线粒体物质。这些总体形态变化与
显着减少寄生虫繁殖,并且可以通过重新引入 Fip1 野生型副本来挽救。
因此,我们假设 Fip1 介导线粒体和寄生虫表膜之间的接触
一种可调节的方式,并且 Fip1 依赖的线粒体形态和动力学对于
寄生虫繁殖。通过分子遗传学、显微镜学和蛋白质组学的结合,我们将
解决线粒体形态的功能相关性和机制。在目标一中,我们将
对 Fip1 突变株进行彻底的体内和体外表型表征以确定其作用
Fip1 和线粒体形状对寄生虫活力的影响。目标二侧重于识别和表征
Fip1 复合体的组成部分,介导线粒体与线粒体外周的关联
寄生虫。最后,在目标三中,我们将确定驱动线粒体的调节机制
当寄生虫离开宿主细胞时形态发生变化。结合起来,这些实验将揭示
驱动和调节弓形虫线粒体形态动力学的分子机制。作为
这种重要的人类病原体的线粒体对其生存至关重要,并且是经过验证的药物靶标,我们的
研究将发现新疗法开发的新靶点。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gustavo A Arrizabalaga其他文献
Gustavo A Arrizabalaga的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gustavo A Arrizabalaga', 18)}}的其他基金
IMSD at Indiana University School of Medicine through Inclusive Biomedical Research Training Program
印第安纳大学医学院的 IMSD 通过包容性生物医学研究培训计划
- 批准号:
10571029 - 财政年份:2023
- 资助金额:
$ 39.28万 - 项目类别:
Homologs of brassinosteroid signaling proteins in Toxoplasma gondii regulate parasite division
弓形虫中油菜素类固醇信号蛋白的同源物调节寄生虫分裂
- 批准号:
10312866 - 财政年份:2021
- 资助金额:
$ 39.28万 - 项目类别:
Homologs of brassinosteroid signaling proteins in Toxoplasma gondii regulate parasite division
弓形虫中油菜素类固醇信号蛋白的同源物调节寄生虫分裂
- 批准号:
10448293 - 财政年份:2021
- 资助金额:
$ 39.28万 - 项目类别:
Interleukin-1 and Steroid Signaling Drive Toxoplasma-induced Prostatic Hyperplasia
Interleukin-1 和类固醇信号传导驱动弓形虫诱发的前列腺增生
- 批准号:
10159890 - 财政年份:2020
- 资助金额:
$ 39.28万 - 项目类别:
Interleukin-1 and Steroid Signaling Drive Toxoplasma-induced Prostatic Hyperplasia
Interleukin-1 和类固醇信号传导驱动弓形虫诱发的前列腺增生
- 批准号:
10579258 - 财政年份:2020
- 资助金额:
$ 39.28万 - 项目类别:
Regulation of mitochondrial morphodynamics in Toxoplasma gondii
弓形虫线粒体形态动力学的调控
- 批准号:
10580777 - 财政年份:2020
- 资助金额:
$ 39.28万 - 项目类别:
Regulation of mitochondrial morphodynamics in Toxoplasma gondii
弓形虫线粒体形态动力学的调控
- 批准号:
10365998 - 财政年份:2020
- 资助金额:
$ 39.28万 - 项目类别:
Interleukin-1 and Steroid Signaling Drive Toxoplasma-induced Prostatic Hyperplasia
Interleukin-1 和类固醇信号传导驱动弓形虫诱发的前列腺增生
- 批准号:
10352452 - 财政年份:2020
- 资助金额:
$ 39.28万 - 项目类别:
Dissecting the calcium dependent phosphorylation network of Toxoplasma gondii
剖析弓形虫的钙依赖性磷酸化网络
- 批准号:
9085774 - 财政年份:2016
- 资助金额:
$ 39.28万 - 项目类别:
Calcium signaling in the parasitophorous vacuole of Toxoplasma gondii
弓形虫寄生液泡中的钙信号传导
- 批准号:
8948686 - 财政年份:2015
- 资助金额:
$ 39.28万 - 项目类别:
相似国自然基金
孕期母体支链氨基酸代谢紊乱和子代支链氨基酸代谢酶基因遗传变异联合作用对儿童神经行为发育影响的队列研究
- 批准号:82373581
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
氨基酸多态性对代谢生成亚硝(酰)胺前体物的影响机理研究
- 批准号:22376114
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
影响植物磷砷选择性吸收关键氨基酸位点的挖掘及分子机制研究
- 批准号:42307009
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
低蛋白日粮脂肪和蛋白质互作影响氨基酸消化率的机制
- 批准号:32302793
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
D-氨基酸对生物膜废水处理系统的影响及调控
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Structural and chemical changes between empty and full AAV capsids
空 AAV 衣壳和完整 AAV 衣壳之间的结构和化学变化
- 批准号:
10646613 - 财政年份:2023
- 资助金额:
$ 39.28万 - 项目类别:
Structure and Function of Direct Delivery Peptides
直接递送肽的结构和功能
- 批准号:
10717736 - 财政年份:2023
- 资助金额:
$ 39.28万 - 项目类别:
Spatio-temporal mechanistic modeling of whole-cell tumor metabolism
全细胞肿瘤代谢的时空机制模型
- 批准号:
10645919 - 财政年份:2023
- 资助金额:
$ 39.28万 - 项目类别:
The role of beta-cell crinophagy in generating diabetogenic neoepitopes
β细胞吞噬在产生糖尿病新表位中的作用
- 批准号:
10733153 - 财政年份:2023
- 资助金额:
$ 39.28万 - 项目类别: