Mapping epistatic interactions in molecular evolution of antibiotic resistance
绘制抗生素耐药性分子进化中的上位相互作用
基本信息
- 批准号:9894816
- 负责人:
- 金额:$ 37.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-04-09 至 2023-03-31
- 项目状态:已结题
- 来源:
- 关键词:AffinityAlgorithmsAllelesAnti-Bacterial AgentsAntibiotic ResistanceAntibioticsAntimalarialsAutomobile DrivingBacteriaBasic ScienceBiochemicalBiological AssayCellsCellular Metabolic ProcessChemicalsClinicalClinical SciencesCompetitive BindingComputational BiologyComputer AnalysisDNA GyraseDNA-Directed RNA PolymeraseDataDihydrofolate ReductaseDihydrofolate Reductase InhibitorDoseDrug TargetingEnzymesEscherichia coliEvolutionFatty AcidsFolic AcidFree EnergyGenesGeneticGenetic EpistasisGlutamatesGoalsHealthHumanHybridsHydrogen BondingIn VitroLaboratoriesLeadLibrariesLigaseMapsMeasurementMethodsMolecularMolecular EvolutionMorbidity - disease rateMutationNMR SpectroscopyNamesNuclear Magnetic ResonancePathway interactionsPharmaceutical PreparationsPhenotypePlasmaPoint MutationPopulationProceduresProteinsPublic HealthReproducibilityResistanceRoleSamplingStructureTailTestingTrimethoprimTrimethoprim ResistanceUrineVariantanti-cancerbacterial resistancebaseclinically relevantcombinatorialcomputerized toolscostdeep sequencingdesigndihydrofolatedrug-sensitiveexhaustionexperimental studyfitnessimprovedmolecular dynamicsmutantnext generation sequencingnovelnovel therapeuticspathogenic bacteriapreservationresistance mechanismsynthetic constructtool
项目摘要
PROJECT SUMMARY
Evolution of antibiotic resistance is a global public health problem. How evolution renders antibiotic
molecules ineffective by altering antibiotic targets is an interesting phenomenon from both clinical and basic
science perspectives. In pathogenic bacteria, there is only a handful of drug target enzymes such as DNA
gyrases, RNA polymerases, fatty acid synthetases, and enzymes involved in folic acid synthesis. Therefore, a
mechanistic understanding of resistance-conferring mutations in these enzymes is clinically critical for
designing new drugs or drug variants that can inhibit resistant bacteria.
In this project, we propose to study evolution of the Escherichia coli dihydrofolate reductase (DHFR)
enzyme and map epistatic interactions between DHFR mutations. DHFR is a ubiquitous enzyme with an
essential role in the folic acid synthesis pathway and is used as a drug target in antibacterial, anticancer, and
antimalarial therapies. In bacteria, an antibiotic named trimethoprim competitively binds to DHFR and blocks its
catalytic activity. Therefore, DHFR mutations that either confer resistance or compensate for reduced catalytic
activity of resistant DHFR mutants are selected for bacterial survival.
We will use laboratory evolution experiments to identify functional DHFR mutations and reproducible
genetic trajectories leading to elevated trimethoprim resistance. We will characterize these mutations by using
in vitro biochemical assays and deep-sequencing based fitness measurements for calculating epistatic
interactions between DHFR mutations. We will use molecular dynamics along with other computational tools
and nuclear magnetic resonance (NMR) spectroscopy to reveal structural changes responsible for resistance
and epistatic interactions. The combination of these approaches presents a unique opportunity to quantitatively
evaluate evolutionary paths leading to trimethoprim resistance and create a discovery pipeline for studying
protein evolution. By creating a deeper understanding for the evolutionary dynamics of an important drug target
enzyme, our proposal will develop experimental and computational tools for studying protein evolution with the
ultimate goal of improving human health. Indeed, our preliminary analyses suggest that we will be able to
design and test novel trimethoprim derivatives that can selectively inhibit DHFR mutants that carry the L28R
replacement, a common and synergistic DHFR mutation. We propose to synthesize trimethoprim-Dihydrofolate
hybrid molecules that will possess the salient structural features of both DHF and trimethoprim molecules
selectively inhibit DHFR mutants with the L28R replacement. We will evolve pan sensitive E. coli strains in the
morbidostat in order to quantify the efficacy of the mutant specific trimethoprim derivatives in impeding
resistance evolution and accordingly develop new strategies for better use of it.
项目概要
抗生素耐药性的演变是一个全球性的公共卫生问题。进化如何产生抗生素
从临床和基础角度来看,通过改变抗生素靶点而无效的分子是一个有趣的现象
科学观点。病原菌中只有DNA等少数药物靶点酶
旋转酶、RNA聚合酶、脂肪酸合成酶和参与叶酸合成的酶。因此,一个
对这些酶中赋予耐药性的突变的机制的理解对于临床至关重要
设计可以抑制耐药细菌的新药或药物变体。
在这个项目中,我们建议研究大肠杆菌二氢叶酸还原酶(DHFR)的进化
酶并绘制 DHFR 突变之间的上位相互作用。 DHFR 是一种普遍存在的酶,
在叶酸合成途径中发挥重要作用,并用作抗菌、抗癌和抗癌药物靶点
抗疟疗法。在细菌中,一种名为甲氧苄啶的抗生素竞争性地与 DHFR 结合并阻断其
催化活性。因此,DHFR 突变要么赋予抗性,要么补偿催化活性的降低
选择抗性 DHFR 突变体的活性以保证细菌的存活。
我们将使用实验室进化实验来鉴定功能性 DHFR 突变和可重复的突变
导致甲氧苄啶耐药性升高的遗传轨迹。我们将通过使用来表征这些突变
用于计算上位性的体外生化测定和基于深度测序的适应性测量
DHFR 突变之间的相互作用。我们将使用分子动力学以及其他计算工具
和核磁共振 (NMR) 光谱揭示导致耐药性的结构变化
和上位相互作用。这些方法的结合提供了一个独特的机会来定量分析
评估导致甲氧苄啶耐药性的进化路径并创建用于研究的发现管道
蛋白质进化。通过对重要药物靶标的进化动力学有更深入的了解
酶,我们的建议将开发实验和计算工具,用于研究蛋白质进化
改善人类健康的最终目标。事实上,我们的初步分析表明我们将能够
设计和测试新型甲氧苄啶衍生物,可以选择性抑制携带 L28R 的 DHFR 突变体
替代,一种常见且具有协同作用的 DHFR 突变。我们建议合成甲氧苄啶二氢叶酸
杂化分子将具有 DHF 和甲氧苄啶分子的显着结构特征
通过 L28R 替代选择性抑制 DHFR 突变体。我们将在以下环境中进化出泛敏感的大肠杆菌菌株
Morbidostat以量化突变体特定甲氧苄啶衍生物在阻碍中的功效
抗性进化并相应地制定新策略以更好地利用它。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Erdal Toprak其他文献
Erdal Toprak的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Erdal Toprak', 18)}}的其他基金
Mapping epistatic interactions in molecular evolution of antibiotic resistance
绘制抗生素耐药性分子进化中的上位相互作用
- 批准号:
10735464 - 财政年份:2018
- 资助金额:
$ 37.91万 - 项目类别:
Mapping epistatic interactions in molecular evolution of antibiotic resistance
绘制抗生素耐药性分子进化中的上位相互作用
- 批准号:
10361439 - 财政年份:2018
- 资助金额:
$ 37.91万 - 项目类别:
相似国自然基金
基于肿瘤病理图片的靶向药物敏感生物标志物识别及统计算法的研究
- 批准号:82304250
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多模态高层语义驱动的深度伪造检测算法研究
- 批准号:62306090
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高精度海表反照率遥感算法研究
- 批准号:42376173
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
基于新型深度学习算法和多组学研究策略鉴定非编码区剪接突变在肌萎缩侧索硬化症中的分子机制
- 批准号:82371878
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于深度学习与水平集方法的心脏MR图像精准分割算法研究
- 批准号:62371156
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
HORMAD-specific TGF-beta resistant memory T cells for treatment of patients with Gastro-esophageal Cancer
HORMAD 特异性 TGF-β 耐药性记忆 T 细胞用于治疗胃食管癌患者
- 批准号:
10731407 - 财政年份:2023
- 资助金额:
$ 37.91万 - 项目类别:
Dynamic regulatory network models of human response to influenza virus
人类对流感病毒反应的动态调控网络模型
- 批准号:
10626922 - 财政年份:2020
- 资助金额:
$ 37.91万 - 项目类别:
Molecular mechanism of antigen editing by Class-I MHC Chaperones
I类MHC伴侣编辑抗原的分子机制
- 批准号:
10531131 - 财政年份:2019
- 资助金额:
$ 37.91万 - 项目类别:
FURTHER DEVELOPMENT OF COLOVAC, A MULTI-ANTIGEN MULTI-PEPTIDE VACCINE, FOR COLON CANCER PREVENTION
进一步开发用于预防结肠癌的多抗原多肽疫苗 COLOVAC
- 批准号:
10021897 - 财政年份:2019
- 资助金额:
$ 37.91万 - 项目类别:
Gene-environment interaction pathways in rheumatoid arthritis
类风湿性关节炎的基因-环境相互作用途径
- 批准号:
10380826 - 财政年份:2019
- 资助金额:
$ 37.91万 - 项目类别: