Hybrid neuroprosthesis with power assist for walking in SCI
用于 SCI 行走的混合神经假体
基本信息
- 批准号:9768248
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-10-01 至 2021-06-30
- 项目状态:已结题
- 来源:
- 关键词:AccelerationAddressAnkleBackBallisticsCardiovascular DeconditioningCellular PhoneChestClinicalCommunitiesComputer softwareContractsDevicesDisuse AtrophyElectric StimulationElectronicsEnsureEnvironmentExerciseExhibitsFloorFrightGaitGait speedHip JointHip region structureHome environmentHybridsImplantIndividualInterventionIntuitionJointsKineticsKneeKnee jointLaboratoriesLifeLife StyleLimb structureLocationLower ExtremityMechanicsMediationMotionMotorMuscleNeuromechanicsParalysedParaplegiaPerformancePhasePhysiologicalPower SourcesPower WalkingPublishingQuality of lifeRampRehabilitation therapyReportingRestRiskRobotSafetySelf-Help DevicesShapesSocietiesSourceSpeedSpinal cord injuryStructureSupervisionSurfaceSystemTestingThoracic spinal cord structureToesTorqueTriceps Brachii MuscleVariantVeteransWalkingWeightWeight-Bearing statebasebody systemdesignexercise rehabilitationexoskeletonfallsfemoral nervefootgait rehabilitationimprovedkinematicslight weightlimb movementneural implantneuromuscularneuroprosthesisnoveloperationrecruitresearch clinical testingresponserobot exoskeletonsensorsocialvolunteerwalking speed
项目摘要
The objective of this project is to design, fabricate and evaluate a new, muscle-driven ambulatory assist
system suitable for clinical testing in the home and community environments that maximizes the functional
mobility of individuals with motor complete thoracic level spinal cord injury (SCI). Paralysis from SCI causes
rapid degeneration of almost every major organ system. Commercially available externally powered robotic
exoskeletons can begin to address such immobility in rehabilitation and supervised settings, but do nothing to
counteract the disuse atrophy of the large lower extremity muscles and ensuing cardiovascular deconditioning.
The maximal walking speeds and distances achieved with these devices fall far short of those necessary for
safe and effective ambulation in the community. As a result, veterans with SCI are still unable to access many
physical locations and life opportunities important for unrestricted reintegration into society.
The “hybrid” approach we propose is radically different from wearable walking robots. Our “muscle first”
strategy derives the primary motive power for walking and other maneuvers by eliciting relatively short bursts
of high intensity contractions from the otherwise paralyzed muscles with electrical stimulation. Internalizing the
primary power sources means the external components only have to lock/unlock the joints or shape the
ballistic limb trajectories generated by the contracting muscles, thus eliminating the need for heavy motors at
each joint and enabling users to reap the considerable physiological benefits of exercising their lower extremity
muscles. The implanted neuromuscular component of our hybrid system is also continuously available for
spontaneous exercise and short duration standing and stepping even without donning the external component.
Stimulated contractions of the hip, knee and ankle muscles routinely generate sufficient power to maintain
full weight bearing for several minutes, as well as to accomplish stepping motions for short distances without
the need for powered exoskeletons. However, hip flexion can be inconsistent with stimulation alone, especially
when attempting to climb steps or walk up ramps. We propose to augment stimulated contractions with a
mechanical subsystem consisting of small, lightweight and efficient brace-mounted motors located at the hips.
When powered by the contracting muscles, this novel configuration will stabilize the hips during stance, freely
rotate during swing, and provide the low-level torques required to consistently achieve the desired limb
movements in spite of variations in walking surfaces or stimulated responses. Since the motors only need to
provide the incremental torques necessary to augment the stimulated hip muscles and shape the limb
trajectories, the entire external structure can be significantly smaller, lighter, and quieter than commercially
available powered exoskeletons based on a “motor-first” strategy. Active knee extension will be generated by
exciting the femoral nerve which routinely generates sufficient torque to stand and walk, while a similar
mechanism to that proposed for the hip will lock during standing or mid-stance to rest the stimulated muscles,
unlock during swing and stair ascent, and assist knee flexion immediately prior to swing. The mechanism will
damp the impact of foot-floor contact, and gently lower the body during stair descent or transitioning from
standing to sitting. A simple spring-assisted ankle brace will protect the foot and raise the toes during swing,
while strong stimulated contractions of the calf muscles provide the propulsive power to drive walking at
speeds far beyond those reported for existing exoskeletons.
This project will define a practical clinical intervention to restore long-distance walking at near normal
speeds suitable for daily activities and community use. After benchtop and laboratory testing, selected users
will attempt to negotiate unrestricted community environments with the hybrid system. The proposed hybrid
neuromechanical gait assist system should enable paralyzed veterans to return to healthy, productive and
socially engaged lifestyles which will have significant impacts on quality of life and societal participation.
该项目的目标是设计、制造和评估一种新型的肌肉驱动的行走辅助设备
适用于家庭和社区环境中的临床测试的系统,可最大限度地发挥功能
运动性完全胸段脊髓损伤 (SCI) 患者的活动能力 SCI 导致的瘫痪。
几乎所有主要器官系统都会快速退化。
外骨骼可以开始解决康复和监督环境中的这种不动问题,但对
抵消下肢大肌肉的废用性萎缩和随之而来的心血管功能失调。
使用这些设备实现的最大步行速度和距离远远低于步行所需的速度和距离
因此,患有 SCI 的退伍军人仍然无法接触到许多人。
地理位置和生活机会对于不受限制地重新融入社会非常重要。
我们提出的“混合”方法与我们的“肌肉优先”的可穿戴步行机器人截然不同。
该策略通过引发相对较短的爆发来获得行走和其他动作的主要动力
通过电刺激使原本瘫痪的肌肉产生高强度收缩。
主要电源意味着外部组件只需锁定/解锁关节或塑造形状
由收缩肌肉产生的弹道肢体轨迹,从而消除了在
每个关节,使用户能够获得锻炼下肢的巨大生理益处
我们的混合系统的植入神经肌肉组件也可以持续使用。
即使不佩戴外部组件,也能进行自发锻炼和短时间站立和行走。
臀部、膝盖和脚踝肌肉的刺激收缩通常会产生足够的力量来维持
完全负重几分钟,以及完成短距离的迈步动作
然而,髋关节屈曲可能与单独的刺激不一致,尤其是。
当尝试爬台阶或走上坡道时,我们建议使用刺激性收缩来增强。
机械子系统由位于臀部的小型、轻质且高效的支架安装电机组成。
当由收缩的肌肉提供动力时,这种新颖的配置将在站立期间自由地稳定臀部
在摆动过程中旋转,并提供一致所需的低水平扭矩以实现所需的肢体
尽管行走表面或刺激反应发生变化,但电机只需要运动。
提供增强受刺激的臀部肌肉和塑造肢体所需的增量扭矩
轨迹,整个外部结构可以比商业上的更小、更轻、更安静
基于“电机优先”策略的可用动力外骨骼将由以下方式生成。
刺激股神经,股神经通常会产生足够的扭矩来站立和行走,而类似的
为臀部提出的机制将在站立或中间站立期间锁定,以休息受刺激的肌肉,
在摆动和上楼梯时解锁,并在摆动前帮助膝盖弯曲。
缓冲脚与地板接触的影响,并在下楼梯或从楼梯过渡时轻轻降低身体
从站立到坐着,一个简单的弹簧辅助脚踝支架将在摆动过程中保护脚并抬起脚趾,
小腿肌肉的强烈刺激收缩提供了驱动力行走
速度远远超过现有外骨骼的报道速度。
该项目将确定一种实用的临床干预措施,以恢复接近正常的长距离行走
适合日常活动和社区使用的速度 经过台式和实验室测试后,选定的用户。
将尝试与混合系统协商不受限制的社区环境。
神经机械步态辅助系统应该能够使瘫痪的退伍军人恢复健康、高效和
参与社会的生活方式将对生活质量和社会参与产生重大影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
RONALD J TRIOLO其他文献
RONALD J TRIOLO的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('RONALD J TRIOLO', 18)}}的其他基金
Functional and Neuroprotective Effects of Restoring Lower Limb Sensation after Diabetic Peripheral Neuropathy
糖尿病周围神经病变后恢复下肢感觉的功能和神经保护作用
- 批准号:
10599863 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Functional and Neuroprotective Effects of Restoring Lower Limb Sensation after Diabetic Peripheral Neuropathy
糖尿病周围神经病变后恢复下肢感觉的功能和神经保护作用
- 批准号:
10184521 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Functional and Neuroprotective Effects of Restoring Lower Limb Sensation after Diabetic Peripheral Neuropathy
糖尿病周围神经病变后恢复下肢感觉的功能和神经保护作用
- 批准号:
10390351 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Stimulation combined with externally powered motorized orthoses for stroke
刺激结合外部动力电动矫形器治疗中风
- 批准号:
10329995 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Stimulation combined with externally powered motorized orthoses for stroke
刺激结合外部动力电动矫形器治疗中风
- 批准号:
10543078 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Exploiting Selective Recruitment to Prolong Standing after SCI
利用选择性招募来延长 SCI 后的资格
- 批准号:
9525331 - 财政年份:2013
- 资助金额:
-- - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Tele-FootX: Virtually Supervised Tele-Exercise Platform for Accelerating Plantar Wound Healing
Tele-FootX:用于加速足底伤口愈合的虚拟监督远程锻炼平台
- 批准号:
10701324 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Tele-Sox: A Tele-Medicine solution based on wearables and gamification to prevent Venous thromboembolism in Oncology Geriatric Patients
Tele-Sox:基于可穿戴设备和游戏化的远程医疗解决方案,用于预防肿瘤老年患者的静脉血栓栓塞
- 批准号:
10547300 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Chondrofluid for arthroscopic knee cartilage repair
用于关节镜膝关节软骨修复的软骨液
- 批准号:
10761624 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Investigation of Sex and Gender Differences in Cardiovascular Risk in Rural Communities
农村社区心血管风险的性别和性别差异调查
- 批准号:
10608716 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Elucidating the Mechanisms of Lymphatic Muscle Cell Dysfunction in Aging and Inflammation
阐明衰老和炎症中淋巴肌细胞功能障碍的机制
- 批准号:
10766113 - 财政年份:2022
- 资助金额:
-- - 项目类别: