A Multi-scale systems pharmacology approach to TB therapy
结核病治疗的多尺度系统药理学方法
基本信息
- 批准号:9762970
- 负责人:
- 金额:$ 71.73万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:Animal ModelAntibiotic TherapyAntibiotic susceptibilityAntibioticsAutomobile DrivingBacteriaBiologicalBloodCellsCessation of lifeCollaborationsCollectionComplexComputer SimulationDataDifferential EquationDiffusionDiseaseDoseDrug CombinationsDrug ExposureDrug KineticsDrug resistanceDrug resistance in tuberculosisEngineeringExtreme drug resistant tuberculosisFrequenciesGenetic ProgrammingGeographic Information SystemsGrantGranulomaHumanImageImmuneImmune responseImmunologyInfectionLengthLocationLung diseasesMacrophage ActivationMathematicsMicrobiologyModelingMolecularMultidrug-Resistant TuberculosisMycobacterium tuberculosisOrganOryctolagus cuniculusPathologicPathologyPenetrationPharmaceutical PreparationsPharmacodynamicsPharmacologyPopulationPositron-Emission TomographyPrimatesProcessRecommendationRegimenResearchResistance developmentRoleScheduleShelter facilitySpectrometry, Mass, Matrix-Assisted Laser Desorption-IonizationStudy modelsSystemTestingTimeTissuesTreatment ProtocolsTuberculosisVariantWorkbasebiosafety level 3 facilitycombinatorialcomputer sciencedesigndrug developmentdrug distributioneffective therapyefficacy trialhuman dataimaging modalityimprovedin vivomathematical modelmulti-scale modelingnext generationnonhuman primatenovelnovel strategiespathogenperformance testspublic health relevancepulmonary granulomaresearch clinical testingserial imagingstatisticstreatment strategytuberculosis drugstuberculosis granulomatuberculosis treatmentvirtual clinical trial
项目摘要
DESCRIPTION (provided by applicant): Tuberculosis (TB) is a pulmonary disease resulting from infection with Mycobacterium tuberculosis (Mtb). TB is treatable but requires multiple antibiotics taken for >6 months, and the emergence of drug resistant Mtb (MDR and XDR-TB) has strained our current small arsenal of effective TB drugs. The situation is desperate considering there are 9 million new cases of active TB every year. The pathological hallmarks of TB are granulomas, dense spherical collections of immune cells that serve to protect the host but also isolate and shelter the pathogen. Granulomas pose a two- fold challenge to TB treatment: granulomas present a physical barrier for antibiotic penetration, and bacterial subpopulations with diminished antibiotic susceptibility emerge within granulomas. These difficulties contribute to the challenge of devising new and more effective treatment strategies for TB: getting the right drugs at the right concentration to the right location to kill the appropiate bacterial subpopulation. Processes that participate in these dynamics act across scales ranging from molecular (e.g. drug diffusion), cellular (e.g. macrophage activation), tissue (e.g. granuloma formation), organs (e.g. blood delivery of antibiotics) up to the entire host. To elaborate mechanisms driving dynamics in this complex system and to answer this vital challenge, we propose a multi-scale systems pharmacology approach. We use multi-scale computational modeling to track drug distributions in granulomas and development of resistance. We identify a novel bridge between the scale of host lung granulomas to the entire host scale where the disease manifests, and we use new approaches to predict better treatment options. We partner this with state-of-the-art experimental methods for imaging drug distribution within granulomas from humans, non-human primates (NHP) and rabbits. We perform Virtual Clinical Trials and test our prediction of a specific regimen for an efficacy trial in NHP models o TB with human-like pathology. To tackle this challenging proposition, we propose to: (1) Determine the spatial and temporal distributions of TB antibiotics within granulomas, and predict the development of resistance; (2) Identify optimal antibiotic treatment regimens for TB using genetic algorithms to narrow the combinatorial design space of antibiotics (e.g. drug classes, dosing, schedule); (3) Perform virtual clinical trials at a population level to test treatment regimens we identify, and test the optimal regimen in the NHP system against a standard regimen. Our outstanding interdisciplinary team and unique approach will allow for rapid assessment of new strategies and ultimately reduce the number of TB deaths world-wide.
描述(由申请人提供):结核病(TB)是一种由结核分枝杆菌(Mtb)感染引起的肺部疾病,结核病是可以治疗的,但需要服用多种抗生素超过 6 个月,并且会出现耐药 Mtb(MDR 和 XDR-)。考虑到每年有 900 万新的活动性结核病病例,目前的有效结核病药物库已经紧张。结核病的标志是肉芽肿,这是免疫细胞的密集球形集合,可以保护宿主,但也可以隔离和庇护病原体。肉芽肿对结核病治疗提出了双重挑战:肉芽肿为抗生素渗透提供了物理屏障,而细菌亚群则具有抗菌作用。肉芽肿内出现的抗生素敏感性降低给设计新的、更有效的结核病治疗策略带来了挑战:将正确的药物以正确的浓度输送到正确的位置来杀死病原体。参与这些动态的过程的作用范围从分子(例如药物扩散)、细胞(例如巨噬细胞激活)、组织(例如肉芽肿形成)、器官(例如抗生素的血液输送)到整个宿主。为了详细阐述驱动这种复杂颗粒系统动力学的机制并应对这一重大挑战,我们提出了一种多尺度系统药理学方法,我们使用多尺度计算模型来跟踪 omas 中的药物分布。我们确定了宿主肺肉芽肿的范围与疾病表现的整个宿主范围之间的新桥梁,并且我们使用新的方法来预测更好的治疗方案。我们进行了虚拟临床试验,并在具有类人病理学的 NHP 模型中测试了我们对特定方案的疗效试验的预测。这个具有挑战性的提议,我们提议:(1)确定肉芽肿内结核病抗生素的空间和时间分布,并预测耐药性的发展;(2)使用遗传算法确定结核病的最佳抗生素治疗方案,以缩小抗生素的组合设计空间(例如药物类别) (3) 在人群水平上进行虚拟临床试验,以测试我们确定的治疗方案,并根据标准方案测试 NHP 系统中的最佳方案。允许快速评估新策略并最终减少全世界结核病死亡人数。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Veronique Dartois其他文献
Veronique Dartois的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Veronique Dartois', 18)}}的其他基金
Translational approaches to improve understanding and outcome in Tuberculous meningitis
提高对结核性脑膜炎的理解和结果的转化方法
- 批准号:
10007088 - 财政年份:2020
- 资助金额:
$ 71.73万 - 项目类别:
A Multi-scale systems pharmacology approach to TB therapy
结核病治疗的多尺度系统药理学方法
- 批准号:
9032152 - 财政年份:2016
- 资助金额:
$ 71.73万 - 项目类别:
相似国自然基金
基于“成分-肠道菌群-胆汁酸轴”研究生姜-干姜走守并用治疗抗生素相关性腹泻配伍机理
- 批准号:82374053
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
抗生素治疗药物监测及耐药症候一体化阵列传感技术研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
抗生素治疗压力下养殖场废弃物中抗生素抗性基因水平转移机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
具有内源抗炎活性的聚乙二醇化氨基糖苷类抗生素在脓毒症治疗中的应用研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
具有内源抗炎活性的聚乙二醇化氨基糖苷类抗生素在脓毒症治疗中的应用研究
- 批准号:32101073
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Novel antimicrobials to combat Gram-negative bacteria
对抗革兰氏阴性菌的新型抗菌剂
- 批准号:
10888456 - 财政年份:2023
- 资助金额:
$ 71.73万 - 项目类别:
A Refined Murine Model of Post-sepsis Cognitive Impairment for Investigating Mitochondrial Abnormalities and Human ApoE4 Gene Polymorphisms
用于研究线粒体异常和人类 ApoE4 基因多态性的精制脓毒症后认知障碍小鼠模型
- 批准号:
10646579 - 财政年份:2023
- 资助金额:
$ 71.73万 - 项目类别:
Antibiotic tolerance as a stepping stone to tuberculosis drug-resistance
抗生素耐受性是结核病耐药性的垫脚石
- 批准号:
10592979 - 财政年份:2023
- 资助金额:
$ 71.73万 - 项目类别:
Elucidating the mechanisms of antibiotic tolerance in Staphylococcus aureus biofilms
阐明金黄色葡萄球菌生物膜的抗生素耐受机制
- 批准号:
10704541 - 财政年份:2022
- 资助金额:
$ 71.73万 - 项目类别:
Elucidating the mechanisms of antibiotic tolerance in Staphylococcus aureus biofilms
阐明金黄色葡萄球菌生物膜的抗生素耐受机制
- 批准号:
10464936 - 财政年份:2022
- 资助金额:
$ 71.73万 - 项目类别: