Using New Technologies to Characterize and Reduce Whole Body Vibration Exposures

使用新技术来表征和减少全身振动暴露

基本信息

  • 批准号:
    7581432
  • 负责人:
  • 金额:
    $ 33.65万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-09-01 至 2012-08-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Bus and truck drivers represent a large segment of the US population which has historically had a high rate of musculoskeletal disorders, and research has generally shown that there is an association between exposure to Whole Body Vibration (WBV) and low back disorders. Impulsive WBV exposures have recently been recognized as a risk factor for low back injury, and guidelines for measurement and assessment of these exposures are now available. We hypothesize that bus drivers have WBV exposures that exceed the allowable time weighted average (TWA) and impulsive threshold levels recommended by ISO, and may be at risk of adverse health effects as a result of these exposures. Tri- axial WBV exposures will be measured and characterized by simultaneously collecting traditional TWA and raw, continuous impulsive WBV exposure data. Using a repeated measures design with bus drivers driving on a test route with both city and highway components, various components of variability and potential exposures determinants related to the bus, bus seat, the bus driver, and the route will also be identified. Global Positioning System (GPS) data will also be collected and integrated with the WBV exposure data to facilitate the identification of location, velocity and type of road associated with high average TWA and impulsive WBV exposures. This information may lead to administrative controls (alter speed and/or route of bus, systematically vary type of routes) and/or engineering controls (identify and trigger the need for street repair) to reduce WBV exposures. PUBLIC HEALTH RELEVANCE: Relevance to Public Health: According to data collected by both Washington State and the United States Bureau of Labor Statistics, the transportation industry represents a large segment of the US population which has historically had a high rate of musculoskeletal disorders. Research has generally shown that there is an association between exposure to whole body vibration and low back disorders. Impulsive exposures have recently been recognized as a risk factor and there are now guidelines for the measurement and assessment of impulsive exposures; however, the magnitude of these impulsive exposures and associated health risks, especially in combination with traditional time-weighted average exposures, is unknown in this large group of workers.
描述(由申请人提供):公共汽车和卡车司机占美国人口的很大一部分,历史上肌肉骨骼疾病的发病率很高,研究普遍表明,暴露于全身振动 (WBV) 与肌肉骨骼疾病之间存在关联。腰部疾病。冲动性 WBV 暴露最近被认为是腰部损伤的危险因素,并且现已提供测量和评估这些暴露的指南。我们假设公交车司机的 WBV 暴露超过了 ISO 建议的允许时间加权平均值 (TWA) 和脉冲阈值水平,并且可能面临因这些暴露而产生不利健康影响的风险。将通过同时收集传统 TWA 和原始、连续脉冲 WBV 暴露数据来测量和表征三轴 WBV 暴露。使用重复测量设计,让公交车司机在包含城市和高速公路组成部分的测试路线上行驶,还将确定与公交车、公交车座椅、公交车司机和路线相关的各种可变因素和潜在暴露决定因素。全球定位系统 (GPS) 数据也将被收集并与 WBV 暴露数据集成,以便于识别与高平均 TWA 和脉冲 WBV 暴露相关的位置、速度和道路类型。该信息可能会导致行政控制(改变公交车的速度和/或路线,系统地改变路线类型)和/或工程控制(识别并触发街道修复的需要),以减少 WBV 暴露。 公共健康相关性:与公共健康的相关性:根据华盛顿州和美国劳工统计局收集的数据,运输业占美国人口的很大一部分,历史上肌肉骨骼疾病的发病率很高。研究普遍表明,暴露于全身振动与腰部疾病之间存在关联。冲动暴露最近被认为是一种风险因素,现在有衡量和评估冲动暴露的指南;然而,这些冲动暴露的程度和相关的健康风险,特别是与传统的时间加权平均暴露相结合,在这一大群工人中尚不清楚。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

PETER W JOHNSON其他文献

PETER W JOHNSON的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('PETER W JOHNSON', 18)}}的其他基金

Using New Technologies to Characterize and Reduce Whole Body Vibration Exposures
使用新技术来表征和减少全身振动暴露
  • 批准号:
    8101034
  • 财政年份:
    2009
  • 资助金额:
    $ 33.65万
  • 项目类别:
Evaluation of the computer mouse and keyboard as exposure assessment tools
计算机鼠标和键盘作为暴露评估工具的评估
  • 批准号:
    7387562
  • 财政年份:
    2008
  • 资助金额:
    $ 33.65万
  • 项目类别:

相似国自然基金

基于单细胞多组学技术探究新冠灭活疫苗应答个体差异的分子机制
  • 批准号:
    32371000
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于RNA碱基编辑的共享肿瘤新抗原原位疫苗技术开发及其应用
  • 批准号:
    82373455
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于SCO方法和SDP/SOCP松弛技术的非凸二次约束二次规划新全局算法与应用研究
  • 批准号:
    12271485
  • 批准年份:
    2022
  • 资助金额:
    46 万元
  • 项目类别:
    面上项目
智能航运新业态下的船舶协同自主航行与智慧监管理论与关键技术
  • 批准号:
    52231014
  • 批准年份:
    2022
  • 资助金额:
    269 万元
  • 项目类别:
    重点项目

相似海外基金

Community-based amblyopia screening using a novel device
使用新型设备进行社区弱视筛查
  • 批准号:
    10641301
  • 财政年份:
    2023
  • 资助金额:
    $ 33.65万
  • 项目类别:
High throughput antibody discovery against cell membrane bound target proteins using innovative MOD technology for direct screening in single-cell assays
使用创新的 MOD 技术发现针对细胞膜结合靶蛋白的高通量抗体,用于单细胞测定中的直接筛选
  • 批准号:
    10698891
  • 财政年份:
    2023
  • 资助金额:
    $ 33.65万
  • 项目类别:
New Technologies and Applications using the Speech-evoked Frequency Following Response
使用语音诱发频率跟随响应的新技术和应用
  • 批准号:
    RGPIN-2020-03990
  • 财政年份:
    2022
  • 资助金额:
    $ 33.65万
  • 项目类别:
    Discovery Grants Program - Individual
Tracking the timing of songbird migration using new technologies
使用新技术追踪鸣禽迁徙的时间
  • 批准号:
    574612-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 33.65万
  • 项目类别:
    University Undergraduate Student Research Awards
Highly Integrated Nucleic-Acid Analysis Using Graphene Bioelectronics
使用石墨烯生物电子学进行高度集成的核酸分析
  • 批准号:
    10372664
  • 财政年份:
    2022
  • 资助金额:
    $ 33.65万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了