Synthetic Mucins for Structural and Compositional Studies of Mucus Gels
用于粘液凝胶结构和成分研究的合成粘蛋白
基本信息
- 批准号:9760806
- 负责人:
- 金额:$ 1.71万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdhesionsAffectAmino Acid SequenceArchitectureBacteriaBehaviorBenchmarkingBindingBinding ProteinsBiochemicalBiochemical GeneticsBiocompatible MaterialsBiologicalBiological ProductsBiologyBiophysicsCarcinomaCharacteristicsChargeChemical StructureChronic Obstructive Airway DiseaseCommunicable DiseasesComplexCystic FibrosisCystineDNADataDiffusionDiseaseDisulfidesElectrostaticsEnvironmentEpithelialEventEyeEye diseasesFamilyFertilizationGasesGelGenesGeneticGlycobiologyGlycoproteinsGynecologyHealthHousingHumanHuman BiologyHuman bodyHydration statusHydrophobic InteractionsHydrophobicityImmunityImmunologyIndividualInfectionIonsJellyfishKineticsLeadLengthLigandsLipidsLiquid substanceLivestockLocationMalignant NeoplasmsMechanicsMediatingMedicalMetabolic PathwayMethodologyMethodsMolecularMorphologyMucin 1 proteinMucin-2 Staining MethodMucinsMucous MembraneMucous body substanceN-glycylalanineNutrientOrganismPathologicPathway interactionsPatternPeptidesPharmaceutical PreparationsPharmacy (field)PlayPolymersPolysaccharidesPreparationProcessPropertyProtein GlycosylationProteinsRNA SplicingRecombinantsReportingReproducibilityResearchRheologyRoleSaltsSamplingSideSkinStructureSurfaceTissuesTransition ElementsVariantVertebral columnWaterWorkabsorptionbasebiophysical propertiesbody systemchemical bondchemical propertychemical synthesiscrosslinkdensitydesignexperimental studyeye drynessflexibilitygenetic manipulationglutamylalanineglycosylationhost microbiomehuman tissueleucyl-alaninematerials sciencemicrobiomemimeticsmolecular sizemonomernatural Blastocyst Implantationnovel therapeuticsnutrient absorptionparticlepathogenphysical propertypolymerizationreconstitutionrespiratoryretinal rodsself assemblysmall moleculesuccesstool
项目摘要
Abstract
Mucus is the primary material that mediates interactions with the outside world in organisms from humans to
jellyfish. Mucus gels function as a hydrating barrier involved in events such as embryo implantation, absorption
of nutrients, drugs, and pathogens, while also housing the majority of the microbiome. Despite these essential
roles, mucus composition, physical properties, and biology remain poorly defined. This is because the major
component, mucin glycoproteins, is innately heterogeneous and cannot be reproducibly obtained by any
current methodology. This roadblock has hindered our understanding of epithelial biology across diverse fields.
The overall objective of this proposal is to generate synthetic mucus as transformative materials to probe the
structure and function of native mucus, and with biomedical applications treating compromised tissues.
We hypothesize that synthetic multi-block glycopolypeptides can emulate natural multi-domain gel-forming
mucins, but with precisely defined and tunable compositions capable of selective modulation of gel properties
and bioactivity. Native mucins are a family of 20+ glycoproteins characterized by massive rod-like domain
rich in glycosylated-Ser/Thr, and short terminal domains that play a role in formation of cross-linked
mucins bundles via Cys disulfides and hydrophobic interactions. Mucin expression and splice variation
are unique to each tissue and disease, and the proteins' glycosylation patterns are the product of complex
metabolic pathways controlled by >1000 genes. These pathways are poorly understood and cannot be
manipulated by any current genetic or biochemical methods. Overall, biological mucins are too
heterogeneous to probe many specific hypotheses. Glycopolymers have been explored as mucus-mimics, but
prior examples have failed to recapitulate the chemical structures and biophysics of native mucins.
During the project period, we will 1) develop tunable and reproducible synthetic mucins based on multi-
block glycopolypeptides that faithfully emulate the chemical and biophysical properties of natural mucins,
and 2) unravel how mucus composition (pH, ions, lipids, DNA, proteins) affects both gel physical properties
and glycan-dependent bioactivity. We will precisely tune the glycan patterns by chemical synthesis and
enzymatic glycosylation to prepare binding or control ligands to interact with glycan-binding proteins. These
properties cannot be controlled by any other current methods. We will assemble the glycopolypeptides into
gels with varied compositions inspired by analysis of native mucus, and we will benchmark our materials
against commercially available mucins. We expect to provide new tools for our lab and others to study
previously untestable hypotheses regarding mucosal transport and biology relevant to health and disease.
Success of the proposed research is anticipated to make a transformative impact across diverse fields from
materials science and glycobiology to pharmaceutics, immunology, infectious diseases, gasteroenterology,
and gynecology.
抽象的
粘液是介导从人类到生物体与外界相互作用的主要物质
海蜇。粘液凝胶充当水合屏障,参与胚胎植入、吸收等事件
营养物质、药物和病原体,同时也容纳了大部分微生物组。尽管有这些必要的
作用、粘液成分、物理性质和生物学仍然不明确。这是因为主要
成分粘蛋白糖蛋白本质上是异质的,不能通过任何方法重复获得
当前的方法。这一障碍阻碍了我们对不同领域的上皮生物学的理解。
该提案的总体目标是生成合成粘液作为转化材料来探索
天然粘液的结构和功能,以及治疗受损组织的生物医学应用。
我们假设合成的多嵌段糖多肽可以模拟天然的多结构域凝胶形成
粘蛋白,但具有精确定义和可调的成分,能够选择性调节凝胶特性
和生物活性。天然粘蛋白是一个由 20 多种糖蛋白组成的家族,其特征是大量的杆状结构域
富含糖基化 Ser/Thr 和短末端结构域,在交联形成中发挥作用
粘蛋白束通过半胱氨酸二硫化物和疏水相互作用。粘蛋白表达和剪接变异
每种组织和疾病都是独特的,蛋白质的糖基化模式是复杂的产物
代谢途径由超过 1000 个基因控制。人们对这些途径知之甚少并且无法
通过任何当前的遗传或生化方法进行操纵。总体而言,生物粘蛋白太
异质来探究许多特定的假设。糖聚合物已被探索作为粘液模拟物,但是
先前的例子未能概括天然粘蛋白的化学结构和生物物理学。
在项目期间,我们将1)开发基于多因素的可调节和可重复的合成粘蛋白
阻断糖多肽,忠实地模拟天然粘蛋白的化学和生物物理特性,
2) 揭示粘液成分(pH、离子、脂质、DNA、蛋白质)如何影响凝胶物理特性
和聚糖依赖性生物活性。我们将通过化学合成精确调整聚糖模式
酶促糖基化以制备结合或控制配体以与聚糖结合蛋白相互作用。这些
属性不能由任何其他当前方法控制。我们将糖多肽组装成
受到天然粘液分析的启发,我们制作了具有不同成分的凝胶,我们将对我们的材料进行基准测试
针对市售粘蛋白。我们期望为我们的实验室和其他人的研究提供新的工具
关于与健康和疾病相关的粘膜运输和生物学的先前无法检验的假设。
预计拟议研究的成功将对各个领域产生变革性影响
材料科学和糖生物学到药剂学、免疫学、传染病、胃肠病学、
和妇科。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
AUSTIN EDWARD SCHLIRF其他文献
AUSTIN EDWARD SCHLIRF的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
动脉粥样硬化发生中CAPN2影响内皮粘连的机制研究
- 批准号:82000254
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
层粘连蛋白受体第272位苏氨酸影响猪瘟病毒感染的分子机制
- 批准号:31902264
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
层粘连蛋白调控巨噬细胞和脂肪基质细胞影响肥胖脂肪组织重塑的机制
- 批准号:
- 批准年份:2019
- 资助金额:300 万元
- 项目类别:
保留双层肌膜的功能性肌肉移植中S1P/S1PR1轴调节巨噬细胞迁移及分化对移植肌肉粘连与功能的影响
- 批准号:81871787
- 批准年份:2018
- 资助金额:55.0 万元
- 项目类别:面上项目
大黄-桃仁介导AhR通路影响Th17/Treg和肠道菌群平衡改善肠粘膜屏障功能防治粘连性肠梗阻的机制研究
- 批准号:81804098
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
相似海外基金
The Role of Layilin as a Novel Regulator of Platelet Activation and Thromboinflammation
Layilin 作为血小板活化和血栓炎症的新型调节剂的作用
- 批准号:
10638243 - 财政年份:2023
- 资助金额:
$ 1.71万 - 项目类别:
Mechanisms Underpinning Afterload-Induced Atrial Fibrillation
后负荷诱发心房颤动的机制
- 批准号:
10679796 - 财政年份:2023
- 资助金额:
$ 1.71万 - 项目类别:
Mucoadhesive film for the treatment of vestibulodynia
治疗前庭痛的粘膜粘附膜
- 批准号:
10699463 - 财政年份:2023
- 资助金额:
$ 1.71万 - 项目类别:
Development of a novel disease-modifying glycan therapeutic for early at-home intervention of acute vaso-occlusive crisis in sickle cell disease
开发一种新型疾病缓解聚糖疗法,用于镰状细胞病急性血管闭塞危象的早期家庭干预
- 批准号:
10603870 - 财政年份:2023
- 资助金额:
$ 1.71万 - 项目类别:
Endothelial-Leukocyte Adhesion in CAR T Cell Treatment Associated Neurotoxicity
CAR T 细胞治疗相关神经毒性中的内皮-白细胞粘附
- 批准号:
10735681 - 财政年份:2023
- 资助金额:
$ 1.71万 - 项目类别: