Elucidating the Trophic Support of Long Axons by Metabolic Signaling in Oligodendrocytes
通过少突胶质细胞代谢信号阐明长轴突的营养支持
基本信息
- 批准号:10782630
- 负责人:
- 金额:$ 37.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-02-09 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:5&apos-AMP-activated protein kinaseAdultAlzheimer&aposs DiseaseAttenuatedAxonBiologicalCentral Nervous SystemCessation of lifeDataDefectDeteriorationDiameterDiseaseElectrophysiology (science)Energy MetabolismEtiologyFailureFiberGLC2 proteinGeneticGleanGlucoseHealth PromotionHomeostasisImpairmentIndividualIntoxicationLife ExpectancyMetabolicMetabolic PathwayMetabolismMicrofluidic MicrochipsMitochondriaModelingMolecularMultiple SclerosisMutant Strains MiceNerve DegenerationNeurodegenerative DisordersNeurogliaNeurologicOligodendrogliaOptic NerveOutputPathway interactionsPhenotypePhosphorylationPhosphotransferasesPlayRegulationRoleSTK11 geneSchwann CellsSecondary toSignal PathwaySignal TransductionStructureTherapeuticWorkaxon injuryaxonal degenerationdeprivationdisabilityimaging modalityin vivointerdisciplinary approachlipid metabolismliver ablationmetabolomemitochondrial metabolismmouse modelmutantmyelinationneural circuitnew therapeutic targetnovelpreservationsensortherapeutic targettoolupstream kinasewhite matter
项目摘要
The fundamenal neuroscientific question as to how myelinating glia promote the health of long
axons is greatly understudied. Axons are a particularly vulnerable component of neural circuits
that are irreversibly damaged in early stages of many debilitating neurodegenerative conditions
such as Multiple sclerosis and Alzheimers’ disease. The mechanisms underlying glial
contributions to axonal injury are only pooly understood. Oligodendrocytes (OLGs), the
myelinating glia of the central nervous system, stabilize axonal integrity by poorly understood
trophic mechanisms. Current models suggest that glial metabolism is critical for this support
function, and disrupted metabolic exchange between OLGs and axons, or metabolic deficits in
OLGs may lead to axonal degeneration. In support, we made the exciting discovery that the LKB1
(liver kinase B1) signaling pathway is a crucial metabolic regulator in OLGs, and the inactivation
of LKB1 in these glia results in aberrant mitochondrial energy metabolism and progressive
degeneration of axons. Remarkably, such non-cell-autonomous axon degeneration is not
preceded by changes of OLG structure and myelination, indicating that it occurs secondary to
glial metabolic perturbation. These discoveries lead us to hypothesize that LKB1 and its
downstream metabolic effectors, most notably those regulating mitochondrial metabolism in
OLGs, are integral to the trophic support mechanisms for axons. Using manipulation of LKB1
signaling as an experimental tool to change glial metabolism with no impact on other biological
outputs of OLGs, here we implement a multidisciplinary approach that will afford us the unique
opportunity to pinpoint metabolic alterations in OLGs that disrupt the support of axons. In this
context we will also investigate whether axons degenerate as a consequence of energetic
deprivation, or metabolic poisoining. Together, this will provide valuable data to elucidate which
downstream components of the LKB1-dependent metabolic signaling network in OLGs are
fundamentally important for axon integrity. The proposed efforts may open the door to the
identification of unexpected metabolic components in OLGs that are essential for axon support.
Manipulation of these components will have the potential to promote axon integrity in
neurodegenerative diseases. Because glial and metabolic abnormalities associated with axon
degeneration can be observed in many neurodegenerative conditions, this approach has the
potential for wide-ranging therapeutic impact.
关于髓鞘神经胶质细胞如何促进长期健康的基本神经科学问题
轴突是神经回路中特别脆弱的组成部分,目前的研究还很少。
在许多使人衰弱的神经退行性疾病的早期阶段受到不可逆转的损害
例如多发性硬化症和阿尔茨海默病。
少突胶质细胞(OLG)对轴突损伤的作用目前还知之甚少。
中枢神经系统的髓鞘神经胶质细胞,通过知之甚少的方式稳定轴突完整性
目前的模型表明神经胶质代谢对于这种支持至关重要。
功能,并扰乱 OLG 和轴突之间的代谢交换,或代谢缺陷
OLGs 可能导致轴突变性,我们做出了令人兴奋的发现,即 LKB1。
(肝激酶 B1)信号通路是 OLG 中重要的代谢调节因子,其失活
这些神经胶质细胞中 LKB1 的缺失导致线粒体能量代谢异常和进行性进展
值得注意的是,这种非细胞自主的轴突变性不是。
先有 OLG 结构和髓鞘形成的变化,表明它继发于
这些发现使我们认识到 LKB1 及其相关性。
下游代谢效应器,最显着的是那些调节线粒体代谢的效应器
OLG 是轴突营养支持机制不可或缺的一部分。
信号传导作为改变神经胶质代谢的实验工具,而不影响其他生物
OLG 的产出,在这里我们实施多学科方法,这将为我们提供独特的
有机会查明 OLG 中破坏轴突支持的代谢变化。
我们还将研究轴突是否因能量消耗而退化
总之,这将为阐明哪些因素提供有价值的数据。
OLG 中 LKB1 依赖性代谢信号网络的下游组件是
对于轴突的完整性至关重要。所提出的努力可能会打开大门。
鉴定 OLG 中意想不到的代谢成分,这些成分对轴突支持至关重要。
对这些组件的操纵将有可能促进轴突的完整性
因为神经退行性疾病与轴突相关的神经胶质和代谢异常。
在许多神经退行性疾病中都可以观察到退行性变,这种方法具有
具有广泛治疗影响的潜力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bogdan Beirowski其他文献
Bogdan Beirowski的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bogdan Beirowski', 18)}}的其他基金
An innovative instrument cluster for the integrative behavioral analysis of mouse mutants with perturbed neuronal connectivity
用于对神经元连接受到干扰的小鼠突变体进行综合行为分析的创新仪器组
- 批准号:
10176986 - 财政年份:2021
- 资助金额:
$ 37.49万 - 项目类别:
Elucidating the trophic support of long axons by metabolic signaling in oligodendrocytes
通过少突胶质细胞代谢信号阐明长轴突的营养支持
- 批准号:
10318595 - 财政年份:2020
- 资助金额:
$ 37.49万 - 项目类别:
Elucidating the trophic support of long axons by metabolic signaling in oligodendrocytes
通过少突胶质细胞代谢信号阐明长轴突的营养支持
- 批准号:
9887384 - 财政年份:2020
- 资助金额:
$ 37.49万 - 项目类别:
相似国自然基金
AMPK通过调控Smurf1的SUMO化抑制创伤性异位骨化的研究
- 批准号:31900852
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
血管微环境中内皮细胞AMPK抑制心肌纤维化的功能与机制研究
- 批准号:81800273
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
基于AMPK-FXR-BSEP介导的齐墩果酸所致胆汁淤积性肝损伤作用机制研究
- 批准号:81760678
- 批准年份:2017
- 资助金额:35.0 万元
- 项目类别:地区科学基金项目
基于AMPK信号通路研究菝葜黄酮调控脂类代谢分子机制
- 批准号:81760157
- 批准年份:2017
- 资助金额:32.0 万元
- 项目类别:地区科学基金项目
PRKAG2基因自发新突变K485E引起心脏电生理异常的机制研究
- 批准号:81400259
- 批准年份:2014
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
A Randomized Clinical Trial of the Safety and FeasibiLity of Metformin as a Treatment for sepsis induced AKI (LiMiT AKI)
二甲双胍治疗脓毒症引起的 AKI (LiMiT AKI) 的安全性和可行性的随机临床试验
- 批准号:
10656829 - 财政年份:2023
- 资助金额:
$ 37.49万 - 项目类别:
Glyoxalase 1 and its Role in Metabolic Syndrome
乙二醛酶 1 及其在代谢综合征中的作用
- 批准号:
10656054 - 财政年份:2023
- 资助金额:
$ 37.49万 - 项目类别:
ULK-mediated autophagy of α-globin in ß-thalassemia
α-地中海贫血中 ULK 介导的 α-珠蛋白自噬
- 批准号:
10649565 - 财政年份:2022
- 资助金额:
$ 37.49万 - 项目类别:
Use of SGLT2 inhibition to improve skeletal muscle metabolism in prediabetes
利用 SGLT2 抑制改善糖尿病前期的骨骼肌代谢
- 批准号:
10420977 - 财政年份:2022
- 资助金额:
$ 37.49万 - 项目类别:
Improving Glycemic Control with Electrical Stimulation in Mexican-Americans
通过电刺激改善墨西哥裔美国人的血糖控制
- 批准号:
10597703 - 财政年份:2022
- 资助金额:
$ 37.49万 - 项目类别: