Testing the functional consequences of rapid centromeric DNA and protein evolution
测试着丝粒 DNA 和蛋白质快速进化的功能后果
基本信息
- 批准号:10785096
- 负责人:
- 金额:$ 10.34万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:AffinityAneuploidyBindingBiochemicalBioinformaticsBiologicalBiological AssayBiological ProcessCell LineCellsCentromereChromatin ModelingChromosome SegregationChromosomesConflict (Psychology)CytoplasmDNADNA BindingDNA Binding DomainDNA SequenceDataDicentric chromosomeEmbryoEmbryonic DevelopmentEukaryotaEvolutionExhibitsFemaleFertilizationGeneticGenomeGoalsHistone H3HybridsIn VitroInfertilityInjectionsMeasuresMeiosisMitosisMolecular ProfilingMusNucleosomesOrganismOrthologous GenePositioning AttributeProcessProteinsRoleSatellite DNAScaffolding ProteinSelfish DNASelfish GenesStretchingSystemTechniquesTestingTrainingUntranslated RNAVariantcareercentromere protein Acentromere protein Cchromatin remodelingchromosome missegregationegggenome integrityhybrid proteinmutantnovelparalogous genepreferenceprogramsprotein functionreconstitutionrecruitreproductivesegregationsperm celltoolzygote
项目摘要
PROJECT SUMMARY/ABSTRACT
The centromere is a network of proteins rooted to centromeric DNA by nucleosomes containing a
centromere-specific histone H3 paralog, CENP-A. Despite the centromere’s conserved role in chromosome
segregation, a subset of its proteins that are essential for its function exhibit molecular signatures of rapid
adaptive evolution. Repetitive centromeric satellite DNA also rapidly evolves, drastically diverging in sequence
between species. The “centromere drive hypothesis” proposes that a genetic conflict between centromeric
DNA and proteins causes their rapid evolution. Specifically, centromeric DNAs behave selfishly and increase
their inheritance through female meiosis (drive) by increasing binding affinity for centromeric proteins. Selfish
centromeres are also detrimental to the organism, which selects for novel centromeric protein variants with a
lower affinity for the selfish DNA, thereby suppressing drive. The centromere drive hypothesis further predicts
that distinct evolutionary lineages undergo unique bouts of centromeric DNA-protein co-evolution, leading to
deleterious centromeric DNA-protein incompatibilities in hybrids that promote reproductive isolation.
I have developed a novel experimental system to test three key propositions of the centromere drive
hypothesis. The first is that centromeric DNA repeat variants differentially recruit centromere proteins. By
fertilizing the eggs of M. musculus with the sperm of divergent Murinae species, I test whether the two species
centromeric DNA repeats differ in their ability to recruit centromeric proteins from the hybrid zygote cytoplasm.
My preliminary data indicate that Mus pahari CENP-A nucleosomes have a higher binding affinity for a key
centromeric protein scaffold, CENP-C, than M. musculus CENP-A nucleosomes. For my first aim, I will
biochemically reconstitute the M. pahari CENP-A nucleosome and test whether the centromeric DNA that
wraps it imparts this increase in CENP-C binding. For my second aim, I will test whether rapidly evolving
centromere protein orthologs (variants) differentially bind to centromere DNA. I will transiently express various
centromere protein orthologs in hybrid zygotes and determine whether their binding preferences for the two
species’ centromeres differ. For my third aim, I will test whether divergent centromere DNAs result in
deleterious incompatibilities in hybrids. I found that in M. musculus / M. pahari hybrid zygotes, a subset of M.
pahari centromeres are mispackaged. I will generate a more contiguous M. pahari genome assembly to
determine if unique M. pahari centromeric DNA sequences underly this mispackaging, and test whether
mispackaging causes deleterious chromosome missegregation.
The hybrid embryo system that I developed serves as a powerful tool to interrogate not only functional
divergence of centromeric DNA and proteins, but also genetic conflict more broadly by uncoupling selfish
DNAs from their species-specific suppressors. This system and my training will position me to establish a
future research program around diverse mammalian selfish genetic elements (see Career Goals).
项目摘要/摘要
丝粒是一个蛋白质网络,该蛋白质通过含有A
Cenp-A Paralog,CENP-A。尽管Centromere在染色体中扮演着保守的角色
隔离,其蛋白质的子集,对于其功能暴露的分子特征至关重要
自适应进化。重复的中心卫星DNA也迅速发展,序列差异很大
物种之间。 “ Centromere驱动假设”提案,即中心层面之间的遗传冲突
DNA和蛋白质会导致它们的快速进化。具体而言,CencerRomeric DNA自私地行事并增加
通过增加对丝粒蛋白的结合亲和力,它们通过女性减数分裂(驱动)遗传。自私
丝粒也对生物体有害,该生物可以选择具有A的新型丝粒蛋白质变体
对自私的DNA的亲和力降低,从而抑制了驱动器。 Centromere驱动假说进一步预测
在丝粒DNA-蛋白联合进化的独特爆发下,这种独特的进化谱系导致
在促进复制性分离的杂种中,有害的丝粒DNA-蛋白质不兼容。
我已经开发了一个新型的实验系统,以测试Centromere驱动器的三个关键建议
假设。首先是丝粒DNA重复变体不同募集的丝粒蛋白。经过
用不同的穆琳娜物种的精子施肥,肌肉菌的卵,我测试这两个物种是否
丝粒DNA的重复不同,它们从杂化合子细胞质中募集着丝粒蛋白的能力不同。
我的初步数据表明,pahari cenp-a核小体对钥匙具有更高的结合亲和力
丝粒蛋白支架CENP-C,比M.肌肉CENP-A核小体。为了我的第一个目标,我会
生物化学重构帕哈里菌Cenp-a核小体,并测试centromeric DNA是否
包裹意味着CENP-C结合的增加。为了我的第二个目标,我将测试是否快速发展
共粒蛋白直系同源物(变体)与中心粒DNA的结合不同。我会暂时表达各种各样的
杂化合子中的丝粒蛋白直系同源物,并确定其对两者的结合偏好是否
物种的中心粒不同。对于我的第三个目标,我将测试是否发散centromere dnas导致
杂种中有害不相容。我发现在M. Musculus / M. Pahari Hybrid zygotes中,M。
Pahari Centromeres拼写错误。我将生成更连续的M. Pahari基因组组件
确定该拼写错误的唯一帕哈里帕哈里中心DNA序列是否存在,并测试是否
错误地包装会导致有害的染色体错误分类。
我开发的混合胚胎系统是询问功能的强大工具
丝粒DNA和蛋白质的差异,但也通过解开自私的遗传冲突。
DNA来自其规格特定的补充剂。这个系统和我的培训将使我确定一个
围绕潜水员哺乳动物自私遗传元素的未来研究计划(请参阅职业目标)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Piero Lamelza其他文献
Piero Lamelza的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
皮层下母源复合体SCMC维持卵子基因组完整性的机制及在卵子老化过程中的作用
- 批准号:31801240
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
PLK1和Aurora-A的SUMO化修饰对年龄相关卵母细胞非整倍性的作用机制研究
- 批准号:31860329
- 批准年份:2018
- 资助金额:38.0 万元
- 项目类别:地区科学基金项目
老龄化卵子非整倍性产生的精确分子机制
- 批准号:81601274
- 批准年份:2016
- 资助金额:17.5 万元
- 项目类别:青年科学基金项目
水稻非整倍性基因组表达与表观遗传调控特征研究
- 批准号:31571266
- 批准年份:2015
- 资助金额:63.0 万元
- 项目类别:面上项目
诱导染色体不稳定与非整倍性的Ska1蛋白影响前列腺癌发生与发展的机制研究
- 批准号:81302235
- 批准年份:2013
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Investigating the regulation and mechanism of tension-sensors Stu2 & Ndc80c
研究张力传感器 Stu2 的调节和机制
- 批准号:
10605085 - 财政年份:2023
- 资助金额:
$ 10.34万 - 项目类别:
Structural and functional principles underlying germline genome transmission
种系基因组传播的结构和功能原理
- 批准号:
10676300 - 财政年份:2022
- 资助金额:
$ 10.34万 - 项目类别:
Systematic elucidation of DNA sequence codes that regulate meiotic recombination
系统阐明调节减数分裂重组的 DNA 序列代码
- 批准号:
10618255 - 财政年份:2022
- 资助金额:
$ 10.34万 - 项目类别:
Systematic elucidation of DNA sequence codes that regulate meiotic recombination
系统阐明调节减数分裂重组的 DNA 序列代码
- 批准号:
10418872 - 财政年份:2022
- 资助金额:
$ 10.34万 - 项目类别:
Structural and functional principles underlying germline genome transmission
种系基因组传播的结构和功能原理
- 批准号:
10535616 - 财政年份:2022
- 资助金额:
$ 10.34万 - 项目类别: