Development and Validation of a Deep Learning system to estimate Interstitial Fibrosis from a kidney ultrasonography image
开发和验证从肾脏超声图像估计间质纤维化的深度学习系统
基本信息
- 批准号:10781840
- 负责人:
- 金额:$ 35.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-22 至 2028-07-31
- 项目状态:未结题
- 来源:
- 关键词:AgeAlbuminuriaAlgorithmsArtificial IntelligenceAtrophicBiopsyBody SizeChronic Kidney FailureClinicalDataDevelopmentDiseaseDisease ProgressionElderlyEtiologyEvaluationFibrosisFutureGenderGoalsHemorrhageImageIndividualKidneyKidney DiseasesKidney FailureLengthMethodsMissionModelingMonitorOutcomePathologistPatientsPerformancePersonsPlug-inPopulationPrognosisReadingRenal functionReproducibilityResearchSeveritiesSeverity of illnessSlideSystemTechniquesTestingTherapeutic immunosuppressionTimeTubular formationUltrasonographyUnited States National Institutes of HealthValidationWorkagedblindclinical biomarkersclinical practiceclinical predictorsclinically relevantcohortdeep learningdeep learning modelhazardhistopathological examinationimprovedinterstitialkidney biopsykidney imagingnephrogenesisnovel therapeuticsprognosticprognosticationprogramsradiologistroutine imagingtooltreatment responseultrasounduser-friendlyvirtual
项目摘要
PROJECT SUMMARY
Interstitial fibrosis is a common finding on kidney biopsy, and strongly predicts future decline in kidney function
irrespective of the underlying etiology of kidney disease. Unfortunately, interstitial fibrosis is poorly captured by
the current clinical biomarkers of kidney function (eGFR and albuminuria). Thus, interstitial fibrosis is common,
holds substantial prognostic importance, and yet clinicians are blind to its presence or severity except in rare
instances when kidney biopsies are performed. Concurrently, new drugs are being tested to limit kidney
interstitial fibrosis, but there are no non-invasive methods to assess changes in fibrosis over time. Interstitial
fibrosis is currently estimated from histopathological examination of a kidney biopsy, which are rarely done. A
non-invasive test to estimate interstitial fibrosis is not currently available. Our exciting preliminary data
demonstrated that use of routine ultrasonography (USG) of the kidney, interpreted by deep learning/artificial
intelligence can non-invasively assess the presence and severity of interstitial fibrosis. The overarching goal of
this study is to further develop, and internally and externally validate a deep learning-based algorithm to estimate
interstitial fibrosis from USG images of the kidney relative to the kidney biopsy gold standard. We hypothesize
that, embedded within a kidney USG image are interstitial fibrosis corelates that can be extracted by deep
learning and quantitatively analyzed to estimate interstitial fibrosis with high precision, and will improve prediction
of longitudinal decline in kidney function. If so, given the widespread availability of kidney USG world-wide, this
non-invasive estimate of interstitial fibrosis would have immediate clinical implications with improved
prognostication, and ability to serially monitor interstitial fibrosis in response to therapy. The proposed program
of research will address three specific aims: Aim 1. To further develop and internally validate a deep learning-
based system for interstitial fibrosis quantification from kidney USG image. In Aim 2, we will externally validate
the performance of the deep learning model using an independent cohort of USG images and kidney biopsies,
and evaluate performance across strata of age, gender, and body size. Finally, in Aim 3, we will determine if the
USG deep learning-based interstitial fibrosis score is associated with kidney disease progression with similar
strengths relative to kidney biopsy assessment of interstitial fibrosis. Upon completion of this program of
research, we envision development of an app. / plug-in for ultrasound reading modules that would facilitate
widespread dissemination of the deep-learning tool, such that USG-based fibrosis scoring is widely available to
treating clinicians.
项目摘要
间质纤维化是肾脏活检的普遍发现,并强烈预测肾功能的未来下降
不论肾脏疾病的潜在病因。不幸的是,间质性纤维化的捕获不佳
当前的肾功能临床生物标志物(EGFR和蛋白尿)。因此,间质性纤维化很常见,
具有实质性的预后重要性,但是临床医生对其存在或严重程度视而不见
进行肾脏活检的实例。同时,正在测试新药以限制肾脏
间质纤维化,但没有非侵入性的方法来评估纤维化随着时间的变化。间隙
目前,通过对肾脏活检的组织病理学检查估计,纤维化很少进行。一个
目前尚不可用进行估计间质纤维化的非侵入性测试。我们令人兴奋的初步数据
证明了肾脏常规超声检查(USG),通过深度学习/人造解释
智力可以非侵入性评估间质纤维化的存在和严重程度。总体目标
这项研究是为了进一步发展,内部和外部验证一种基于深度学习的算法以估计
从肾脏的USG图像到肾脏活检金标准的间质纤维化。我们假设
嵌入肾脏USG图像中的是间质纤维化核层,可以通过深处提取
学习和定量分析以高精度估算间质纤维化,并将改善预测
肾功能下降的纵向下降。如果是这样,鉴于全球肾脏USG的广泛可用性
间质性纤维化的非侵入性估计值将立即具有临床意义,并有所改善
预后,以及响应治疗的串行监测间质纤维化的能力。拟议的计划
研究将针对三个具体目标:目标1。进一步发展和内部验证深度学习 -
基于肾脏USG图像的间质纤维化定量系统。在AIM 2中,我们将在外部验证
使用独立的USG图像和肾脏活检队列的深度学习模型的性能,
并评估年龄,性别和身体大小的阶层的表现。最后,在AIM 3中,我们将确定是否
USG深度学习的间质纤维化评分与肾脏疾病进展有关
相对于肾脏活检评估间隙纤维化的优势。完成此计划后
研究,我们设想开发应用程序。 /用于超声阅读模块的插件,可以促进
深度学习工具的广泛传播,因此,基于USG的纤维化评分可广泛使用
治疗临床医生。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ambarish Athavale其他文献
Ambarish Athavale的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
B细胞刺激因子通路激活介导足细胞损伤产生蛋白尿的机制研究
- 批准号:82300795
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
阵发性睡眠性血红蛋白尿症异常克隆扩增的分子机制及干预研究
- 批准号:82370121
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
AT1-AA-FOXO3-S100A13信号通路调控足细胞衰老促进子痫前期蛋白尿形成的机制研究
- 批准号:82370718
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
糖肾方通过上调乳酸脱氢酶LDHB促进足细胞乳酸能量代谢减少DKD蛋白尿的机制研究
- 批准号:82374224
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
METTL14调控Rab7线粒体定位在蛋白尿损伤肾小管上皮细胞中的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Urine podocyte and podocyte GL3: novel screening tools for phenotype assessment and treatment efficacy in Fabry disease
尿液足细胞和足细胞 GL3:用于法布里病表型评估和治疗效果的新型筛选工具
- 批准号:
10644824 - 财政年份:2023
- 资助金额:
$ 35.8万 - 项目类别:
Development of Prognostic Algorithms to Identify Subjects at High Risk of ESKD in Type 2 Diabetes
开发预后算法来识别 2 型糖尿病 ESKD 高风险受试者
- 批准号:
10693928 - 财政年份:2021
- 资助金额:
$ 35.8万 - 项目类别:
Development of Prognostic Algorithms to Identify Subjects at High Risk of ESKD in Type 2 Diabetes
开发预后算法来识别 2 型糖尿病 ESKD 高风险受试者
- 批准号:
10491130 - 财政年份:2021
- 资助金额:
$ 35.8万 - 项目类别:
Comparative Effectiveness and Safety of Newer and Older Antihyperglycemic Medications
新旧抗高血糖药物的有效性和安全性比较
- 批准号:
10334530 - 财政年份:2021
- 资助金额:
$ 35.8万 - 项目类别:
Comparative Effectiveness and Safety of Newer and Older Antihyperglycemic Medications
新旧抗高血糖药物的有效性和安全性比较
- 批准号:
10730533 - 财政年份:2021
- 资助金额:
$ 35.8万 - 项目类别: