Subcellular Wireless Axons for in vivo Localized Neuronal Excitation
用于体内局部神经元兴奋的亚细胞无线轴突
基本信息
- 批准号:9886359
- 负责人:
- 金额:$ 32.82万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-12-15 至 2024-11-30
- 项目状态:已结题
- 来源:
- 关键词:AcuteAreaAutopsyAxonBasic ScienceBenchmarkingBiocompatible MaterialsBiologicalBiomimetic MaterialsBrainBrain InjuriesCarbon NanotubesCerebral cortexChronicCicatrixClinicalCommunitiesCouplingDataDevicesEffectivenessElectric StimulationElectrodesElectrophysiology (science)FailureFoundationsFrequenciesGoalsHistologicHumanImmobilizationImmune responseImplantInfectionInflammatory ResponseInterventionLasersLateralLeadLearningLightLongevityMapsMeasuresMechanicsMethodsMicroelectrodesMicrogliaModalityMusNanostructuresNerve DegenerationNeurologistNeuronsNeurosciences ResearchNeurosurgeonOutcomePatientsPenetrationPerformancePhysiologic pulsePopulationPositioning AttributeProbabilityPropertyReactionReporterRiskSafetyScientistSignal TransductionStructureSumSurfaceSystemTechnologyTestingTimeTissuesTraumaValidationVariantWidthWireless Technologybasebiomaterial compatibilitycell typecraniumdesignelectric impedanceexperienceexperimental studygenetic manipulationheat injuryimplantationimprovedin vivoinnovationlight scatteringmicrostimulationnervous system disorderneural circuitneural stimulationneuron lossneuroprosthesisneuroregulationnovelnovel strategiesoptogeneticsrelating to nervous systemresponsesuccesstemporal measurementtool
项目摘要
Project Summary
This BRG R01 (PAR-16-242) application aims to greatly improved spatial and temporal resolution:
Penetrating electrical stimulation arrays are a crucial component of basic neuroscience research and human
neuroprosthetics. A challenge with this technology is achieving a highly localized stimulated area of the same
neurons over weeks and months. However, implantation of cortical microelectrodes causes a reactive tissue
response, which results in a degradation of the preferred functional performance over time, thus limiting the
device capabilities. Current electrical stimulation implants are tethered to the skull, which chronically increases
the impact of mechanical mismatch, causes neural degeneration around the implant, increases the chance of
infection, increases the chance of mechanical trauma induced failure as well as shifting of the electrode
position, and increases in electrical impedances from glial scarring. In turn, the electrical stimulation loses its
effectiveness to excite neural tissue, making longevity a challenge. Simply increasing the electrical current to
compensate can lead to permenant damage to the tissue and/or the electrode.
This proposal proves an innovative strategy that uses leading-edge biocompatible materials to develop
innovative “Wireless Axon” electrodes that are ultra-small and untethered, with bioactive surfaces and
nanostructured materials for enhanced signal transduction to electrically excitable tissue. The project aims to
decouple the mechanical requirements necessary in traditional microstimulation technology and improve
spatial selectivity of activated neurons for stable long-term electrical stimulation. The guiding hypothesis is that
decoupling the mechanical tether will improve tissue integration, while immobilized biomolecules will effectively
intervene with the reactive tissue response as well as improve electrode-neuron signal-coupling and selectivity.
This project is likely to make significant contributions through developing advanced neural probes for long-
term (permanent), high quality, and selective neural stimulation. These could potentially lead to paradigm shifts
in both neuroscience research and clinical neuroprosthetics and neurostimulation through creating the
capability of activating specific neurons for long periods of time with great precision. Our guiding hypothesis is
that the product of the combined benefit is synergistic and greater than the sum of its parts. The outcomes of
this project are also likely to establish new biologically inspired paradigms for creating long-lasting, high-fidelity
neural interfaces with biomimetic materials as well as new paradigms for longitudinally probing neural circuits,
particularly for the study of learning and plasticity. Several variations of the technology developed in this project
is expected to be compatible with optogenetics. This project would impact both the neuroscience research
community, and clinical scientists (neurosurgeons, neurologists, and patients) that use and benefit from
neuroprosthetic- and neurostimulation-based treatments interventions.
项目概要
该 BRG R01 (PAR-16-242) 应用旨在大幅提高空间和时间分辨率:
穿透性电刺激阵列是基础神经科学研究和人类神经科学研究的重要组成部分
这项技术的一个挑战是实现相同的高度局部化的刺激区域。
然而,皮层微电极的植入会导致组织产生反应。
响应,这会导致首选功能性能随着时间的推移而下降,从而限制了
目前的电刺激植入物被拴在头骨上,头骨会长期增加。
机械不匹配的影响,导致植入物周围的神经退化,增加了
感染,增加机械创伤引起的故障以及电极移位的机会
位置,并且神经胶质疤痕导致电阻抗增加,反过来,电刺激失去作用。
有效地刺激神经组织,使寿命成为一个挑战,只需增加电流即可。
补偿可能导致组织和/或电极永久性损坏。
该提案证明了一种创新策略,利用领先的生物相容性材料来开发
创新的“无线轴突”电极超小且不受束缚,具有生物活性表面和
该项目旨在增强可电兴奋组织的信号转导的纳米结构材料。
解耦传统微刺激技术中必要的机械要求并改进
激活神经元的空间选择性以实现稳定的长期电刺激。
解耦机械系绳将改善组织整合,而固定的生物分子将有效地
干预反应性组织反应并改善电极-神经元信号耦合和选择性。
该项目可能会通过开发长期的先进神经探针做出重大贡献。
长期(永久)、高质量和选择性神经刺激可能会导致范式转变。
通过创建神经科学研究和临床神经修复术和神经刺激
我们的指导性假设是长时间、高精度地激活特定神经元的能力。
综合效益的产物是协同的,并且大于其各个部分的总和。
该项目还可能建立新的受生物学启发的范例,以创造持久、高保真的效果
与仿生材料的神经接口以及纵向探测神经回路的新范例,
特别是对于学习和可塑性的研究。该项目中开发的技术的几种变体。
预计该项目将与光遗传学兼容。
使用并受益于的社区和临床科学家(神经外科医生、神经科医生和患者)
基于神经修复和神经刺激的治疗干预。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Takashi Daniel Yoshida Kozai其他文献
Parvalbumin interneuron activity induces slow cerebrovascular fluctuations in awake mice
小清蛋白中间神经元活动诱导清醒小鼠脑血管缓慢波动
- DOI:
10.1101/2024.06.15.599179 - 发表时间:
2024-06-16 - 期刊:
- 影响因子:0
- 作者:
A. Rakymzhan;Mitsuhiro Fukuda;Takashi Daniel Yoshida Kozai;Alberto L Vazquez - 通讯作者:
Alberto L Vazquez
Takashi Daniel Yoshida Kozai的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Takashi Daniel Yoshida Kozai', 18)}}的其他基金
Modulation of Oligodendrocyte Calcium Activity with ICMS and Melatonin Stimulation
ICMS 和褪黑激素刺激调节少突胶质细胞钙活性
- 批准号:
10622191 - 财政年份:2022
- 资助金额:
$ 32.82万 - 项目类别:
Elucidating electrical stimulation induced non-neuronal activity using emerging in vivo imaging technology and electrophysiology
利用新兴的体内成像技术和电生理学阐明电刺激诱导的非神经元活动
- 批准号:
10267211 - 财政年份:2020
- 资助金额:
$ 32.82万 - 项目类别:
Elucidating electrical stimulation induced non-neuronal activity using emerging in vivo imaging technology and electrophysiology
利用新兴的体内成像技术和电生理学阐明电刺激诱导的非神经元活动
- 批准号:
10447133 - 财政年份:2020
- 资助金额:
$ 32.82万 - 项目类别:
Using Electrical Stimulation to Modulation Microglia and the Conversion of Microglia Phenotypes
利用电刺激调节小胶质细胞和小胶质细胞表型的转换
- 批准号:
10526723 - 财政年份:2020
- 资助金额:
$ 32.82万 - 项目类别:
2020 Nuroelectronic Interfaces Gordon Research Conference and Gordon Research Seminar
2020年神经电子接口戈登研究会议暨戈登研究研讨会
- 批准号:
9913124 - 财政年份:2020
- 资助金额:
$ 32.82万 - 项目类别:
Elucidating electrical stimulation induced non-neuronal activity using emerging in vivo imaging technology and electrophysiology
利用新兴的体内成像技术和电生理学阐明电刺激诱导的非神经元活动
- 批准号:
10599740 - 财政年份:2020
- 资助金额:
$ 32.82万 - 项目类别:
Elucidating electrical stimulation induced non-neuronal activity using emerging in vivo imaging technology and electrophysiology
利用新兴的体内成像技术和电生理学阐明电刺激诱导的非神经元活动
- 批准号:
10668278 - 财政年份:2020
- 资助金额:
$ 32.82万 - 项目类别:
Subcellular Wireless Axons for in vivo Localized Neuronal Excitation
用于体内局部神经元兴奋的亚细胞无线轴突
- 批准号:
10534746 - 财政年份:2019
- 资助金额:
$ 32.82万 - 项目类别:
Subcellular Wireless Axons for in vivo Localized Neuronal Excitation
用于体内局部神经元兴奋的亚细胞无线轴突
- 批准号:
10307095 - 财政年份:2019
- 资助金额:
$ 32.82万 - 项目类别:
Mechanisms behind Electrode Induced BBB damage's impact on neural recording
电极诱导 BBB 损伤对神经记录影响的机制
- 批准号:
9760009 - 财政年份:2015
- 资助金额:
$ 32.82万 - 项目类别:
相似国自然基金
蛋白法尼基化修饰对水稻边界区域和腋生分生组织发育的调控机制
- 批准号:32300312
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于能动性-结构组态效应的区域创业活动空间依赖与突破
- 批准号:42371173
- 批准年份:2023
- 资助金额:46 万元
- 项目类别:面上项目
包含低序列复杂度区域蛋白质相分离的跨尺度构象关联性研究
- 批准号:22303060
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于原位检-监测协同的大面积表层混凝土传输性能劣化区域快速识别方法研究
- 批准号:52378218
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
面向复杂应急区域的移动基站信号覆盖问题研究
- 批准号:72301209
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
The effects of wildfire exposure on maternal allergic asthma and consequences on neurobiology
野火暴露对母亲过敏性哮喘的影响及其对神经生物学的影响
- 批准号:
10727122 - 财政年份:2023
- 资助金额:
$ 32.82万 - 项目类别:
High-definition Endoscopic Ultrasound Navigation for Targeted Dual Neuromodulation Therapy
用于靶向双重神经调节治疗的高清内窥镜超声导航
- 批准号:
10817376 - 财政年份:2023
- 资助金额:
$ 32.82万 - 项目类别:
Alcohol-induced epigenetic reprogramming of PPAR-α affects allopregnanolone biosynthesis
酒精诱导的 PPAR-α 表观遗传重编程影响异孕酮生物合成
- 批准号:
10658534 - 财政年份:2023
- 资助金额:
$ 32.82万 - 项目类别:
The Role of the Extracellular Matrix in Alcohol Use Disorder
细胞外基质在酒精使用障碍中的作用
- 批准号:
10606097 - 财政年份:2023
- 资助金额:
$ 32.82万 - 项目类别:
Establishing the anatomical and functional mechanisms of white matter deep brain stimulation
建立白质深部脑刺激的解剖和功能机制
- 批准号:
10803745 - 财政年份:2023
- 资助金额:
$ 32.82万 - 项目类别: