Mitochondrial Dynamics in Female Reproduction
女性生殖中的线粒体动力学
基本信息
- 批准号:10767376
- 负责人:
- 金额:$ 15.65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAdministrative SupplementAffectAgonistApoptosisBiologyBirthBreedingCell LineageCell ProliferationCell physiologyCouplesDefectDevelopmentDevelopmental ProcessDrosophila genusEnsureFemaleFertilityFundingGenderGerm CellsGoalsHumanImpairmentInfertilityLinkMammalsMetabolicMetabolismMitochondriaMitochondrial DNAMusMutant Strains MiceMutateNational Institute of General Medical SciencesOocytesOvarianOvarian FollicleParentsPlayProcessPublishingRegulationReproductionReproductive MedicineResearchRoleSeriesSomatic CellSpermatocytesSpermatogenesisStimulusStrategic PlanningSupporting CellTestingUnited States National Institutes of HealthWomen&aposs Healthconditional knockoutcostcost efficientexperimental studyfemale fertilitygermline stem cellsimprovedindividual responseinsightmalemale fertilitymitochondrial DNA mutationmitochondrial dysfunctionmitochondrial fitnessmouse modelmutantnovelnovel strategiesreproductivesexstem cell differentiationstem cells
项目摘要
PROJECT SUMMARY
Mitochondrial fitness is critical for their proper functions in diverse cellular and developmental processes.
Strong evidence links mitochondrial dysfunction to reduced fertility in humans. However, the mechanism
underlying these connections, and whether any potential treatments of such mitochondrial defects may
remedy these infertile cases, remain unknown. Mitochondrial features, activities, and functions are tightly
regulated via mitochondrial fusion (mitofusion) and fission, collectively known as mitochondrial
dynamics. Accumulating evidence from somatic cells support that mitochondrial dynamics not only
enable coordinated responses of individual mitochondria to developmental stimuli and metabolic needs,
but also ensure mitochondrial fitness. In addition, increased mitochondrial dynamics reduce mutant
mitochondria in Drosophila oocytes, strongly suggesting conserved roles of mitochondrial dynamics in
regulating mitochondrial fitness in reproduction. In the parent R01 of this supplement study, we aim to
unveil novel functional mechanisms of how spermatogonial stem cell differentiation and male germ
cell mitochondrial fitness are regulated by properly balanced mitofusion and fission. We have generated
a series of genetically modified mouse models to achieve this goal but will only need male mice. On the
other hand, published studies suggest that mitochondrial dynamics conservatively regulate mammalian
reproduction in both sexes but via sex-specific mechanisms. Each mature oocyte contains about
100,000 mitochondria, 500-fold more than male germ cells, suggesting that very high mitochondrial
activities are needed to support female reproduction. Studies with conditional knockouts of either pro-
fusion or fission factors in female germ cells indeed support that mitochondrial dynamics are dispensable
for ovarian follicular reserve. This supplement study aims to unveil the role of mitochondria dynamics
in female fertility and underlying mechanisms, scientifically complementary to the parent R01. We will
cost-efficiently use female mutant mice from the same breeding process for the proposed experiments,
operationally complementary to the parent R01. Using mitochondrial DNA mutator mice and novel
mitofusion agonists, we will determine the functional impacts on female reproduction and mitochondrial
fitness by augmented mitochondrial dynamics. Study findings will fundamentally advance research in
both mitochondrial biology and reproductive medicine by revealing sex-based commonalities and
differences in the mitochondrial regulation of mammalian reproduction. Our study will also inform a novel
strategy to treat impaired female fertility due to mitochondrial dysfunction. Findings from this study will
significantly advance reproductive research related to women’s health, answering the call of this specific
“Administrative Supplement for Research on Sex and/or Gender Influences” and serving well the strategic
goals of the “2019-2023 Trans-NIH Strategic Plan for Women’s Health Research”.
项目摘要
线粒体适应性对于它们在大型细胞和发育过程中的适当功能至关重要。
有力的证据将线粒体功能障碍与人类的生育能力降低联系起来。但是,机制
这些连接的基础,以及这种线粒体缺陷的任何潜在治疗是否可能
补救这些不育病,尚不清楚。线粒体特征,活动和功能紧密
通过线粒体融合(线粒体)和裂变调节,统称为线粒体
动力学。从体细胞中积累的证据支持线粒体动力学不仅
实现单个线粒体的协调反应,以发展刺激和代谢需求,
但也要确保线粒体健身。另外,线粒体动力学增加了突变体
果蝇卵母细胞中的线粒体,强烈建议线粒体动力学的保守作用
调节繁殖中的线粒体适应性。在这项补充研究的父母R01中,我们的目标是
揭示精子干细胞分化和雄性生殖的新型功能机制
细胞线粒体适应性受到适当平衡的丝定渗和裂变的调节。我们已经生成了
一系列普遍修改的鼠标模型可以实现此目标,但只需要雄性小鼠。在
另一方面,已发表的研究表明,线粒体动力学保守调节哺乳动物
两性的繁殖,但通过性别特定的机制。每个成熟的卵母细胞都包含
100,000线粒体,比男性生殖细胞多500倍,这表明线粒体很高
需要活动以支持女性繁殖。通过有条件敲除任一的研究的研究
雌性生殖细胞中的融合或裂变因子确实支持线粒体动力学是可分配的
用于卵巢卵泡储备。这项补充研究旨在揭示线粒体动力学的作用
在女性的生育力和基本机制中,对父母R01进行科学完善。我们将
成本效率地使用来自同一育种过程的女性突变小鼠进行拟议的实验,
在操作上互补与父级R01。使用线粒体DNA突变器小鼠和新颖
derofusion激动剂,我们将确定对女性繁殖和线粒体的功能影响
通过增强线粒体动力学的健身。研究结果将从根本上进步
线粒体生物学和生殖医学都通过揭示基于性别的共同点和
哺乳动物繁殖的线粒体调节的差异。我们的研究也将为一本小说提供信息
治疗因线粒体功能障碍而导致女性生育受损的策略。这项研究的发现将
显着提高与妇女健康有关的复制研究,回答了这种特定的呼吁
“有关性和/或性别影响研究的行政补充”,并很好地服务于该战略
“ 2019 - 2023年妇女健康研究战略计划”的目标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yuan Wang其他文献
Yuan Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yuan Wang', 18)}}的其他基金
Mitochondrial dynamics in spermatogonial differentiation
精原细胞分化中的线粒体动力学
- 批准号:
10685938 - 财政年份:2022
- 资助金额:
$ 15.65万 - 项目类别:
Equipment purchase request for parent R01 - Mitochondrial dynamics in spermatogonial differentiation
母体 R01 的设备购买请求 - 精原细胞分化中的线粒体动力学
- 批准号:
10795361 - 财政年份:2022
- 资助金额:
$ 15.65万 - 项目类别:
Development and afferent regulation of auditory neurons
听觉神经元的发育和传入调节
- 批准号:
9198439 - 财政年份:2014
- 资助金额:
$ 15.65万 - 项目类别:
Development and afferent regulation of auditory neurons
听觉神经元的发育和传入调节
- 批准号:
8628414 - 财政年份:2014
- 资助金额:
$ 15.65万 - 项目类别:
Development and afferent regulation of auditory neurons
听觉神经元的发育和传入调节
- 批准号:
8788398 - 财政年份:2014
- 资助金额:
$ 15.65万 - 项目类别:
相似海外基金
South Carolina Clinical & Translational Research Institute (SCTR)
南卡罗来纳州临床
- 批准号:
10820346 - 财政年份:2023
- 资助金额:
$ 15.65万 - 项目类别:
Dissecting the Role of Arachidonic Acid Metabolic Pathways Involved in Resolution Versus Progression of PM-Induced Cardiometabolic Toxicity
剖析花生四烯酸代谢途径在 PM 诱导的心脏代谢毒性的消退与进展中的作用
- 批准号:
10716093 - 财政年份:2023
- 资助金额:
$ 15.65万 - 项目类别:
Optimizing Environmental Enrichment to Model Preclinical Neurorehabilitation
优化环境富集以模拟临床前神经康复
- 批准号:
10789355 - 财政年份:2023
- 资助金额:
$ 15.65万 - 项目类别:
Exploring CRMP5 as a novel target for Alzheimers disease
探索 CRMP5 作为阿尔茨海默病的新靶点
- 批准号:
10712329 - 财政年份:2022
- 资助金额:
$ 15.65万 - 项目类别: