Mechanisms regulating Meningeal Development and Function
调节脑膜发育和功能的机制
基本信息
- 批准号:10763476
- 负责人:
- 金额:$ 24.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-04-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:AdultAffectAgeAgingAnatomyAnimal FeedAnimalsBathingBiochemicalBiological AssayBlood VesselsBrainBrain InjuriesBuffersCell Culture TechniquesCellsCellular StructuresCentral Nervous SystemCerebrospinal FluidCirculationComplexConnective TissueDefectDevelopmentDevelopmental BiologyDietDiseaseElectron MicroscopyEmbryoEndotheliumEnvironmentExcisionExperimental ModelsFatty acid glycerol estersFishesFunctional disorderFutureGene ExpressionGenesGeneticHistologyHomeostasisImageImpaired cognitionIn VitroInfectionInjuryKnowledgeLabelLinkLiquid substanceLymphatic SystemMacrophageMaintenanceMechanicsMeningealMeningesMetabolicModelingMolecularMorphologyMutagenesisNerve DegenerationNeurocognitiveNeuronsObesityPathogenicityPathway interactionsPericytesPhasePlayPopulationPositioning AttributeProcessPropertyRecoveryRegulationResearchResolutionRiboTagRoleShockSignal TransductionSiteStructureSystemTissuesTransgenic AnimalsTransgenic OrganismsTransmission Electron MicroscopyVascular PermeabilitiesVascular SystemVascularizationZebrafishage effectcell typeconfocal imagingdesignependyminsextracellulargrasphigh resolution imagingin vivoinsightmutantnovelpathogenpreventprogramsresearch facultyresponsesingle-cell RNA sequencingstroke incidencetenure tracktooltranscriptome sequencinguptakewasting
项目摘要
ABSTRACT/PROJECT SUMMARY
The meninges, a protective layer ensheathing the Central Nervous System (CNS), is a highly vascularized,
complex tissue that serves as the primary site for equilibration of cerebrospinal fluid (CSF). CSF, a
transparent, colorless fluid that recirculates throughout the CNS, supports brain buoyancy, prevents
vascular and neuronal collapse, and provides buffering against mechanical injury. Given the functional
importance of CSF for CNS homeostasis, the clearance of metabolic waste from this fluid compartment is
carried out as a nearly constant process. This waste removal process relies heavily on groups of vascular-
associated, perivascular cells within the meninges that filter the byproducts from the CSF and transport
them into circulation via the lymphatic system for ultimate disposal. Hence, the interaction between
meningeal cells and the vascular system is crucial to safeguard brain homeostasis. Some forms of
neurodegeneration have been linked with a decline in homeostasis and an increase in metabolic waste
accumulation in an age-, diet- or pathogenic infection-dependent manner. Understanding vascular-
associated meningeal cells make-up, developmental origin, genetic regulation and function is an important
long-term undertaking to fully grasp how neurodegeneration occurs in response to these conditions. The
amenability of the zebrafish for live imaging represents a remarkable advantage over other models to study
meningeal development in vivo. In Aim 1, I will use newly developed transgenic lines labeling pan-
meningeal and meningeal perivascular cell populations in vivo to uncover the developmental origin of these
cells using a combination of high resolution confocal imaging for lineage tracing studies, Transmission
Electron Microscopy to characterize their cellular structures, and single cell and “RiboTag” RNA-
sequencing to identify gene programs regulated in meningeal populations. Aim 2 will uncover the functions
that meningeal cells play in supporting CNS homeostasis and maintenance. Analysis will be done utilizing
readily available mutants that present defects in meningeal development. In addition, as an unbiased
approach, I will utilize a forward genetic mutagenesis screen to uncover genes required for proper
meningeal development and function. Lastly, complementary in vivo high resolution confocal imaging and
in vitro cell culture assays will be utilized to uncover biochemical changes in meningeal cells resulting from
age, diet, and infection in both wild type and mutant zebrafish populations (Aim 3). These aims are
designed to expand the current knowledge of meningeal cellular components, genetic signals controlling
their development, and a better understanding of their interaction with the vasculature. This proposal offers
a foundational niche in the vascular developmental biology field through which I can launch a future tenure-
track research faculty position.
摘要/项目摘要
这些脑膜是一种揭示中枢神经系统(CNS)的保护层,是高度血管化的,
复杂的组织是脑脊液(CSF)平衡的主要部位。 CSF,a
透明,无色的流体在整个中枢神经系统中循环,支持脑浮力,可防止
血管和神经元塌陷,并提供防止机械损伤的缓冲。给定功能
CSF对于中枢神经系统稳态的重要性,该液体室的代谢废物清除率是
作为一个几乎恒定的过程进行。这种废物清除过程在很大程度上取决于血管
相关的脑膜周细胞中的脑血管周细胞过滤了CSF的副产品并运输
他们通过淋巴系统进入循环以进行最终处置。因此,
脑膜细胞和血管系统对于保护大脑稳态至关重要。某些形式
神经变性与稳态下降和代谢废物的增加有关
以年龄,饮食或致病感染依赖性方式积累。了解血管 -
相关的脑膜细胞构成,发育起源,遗传调节和功能是重要的
长期的承诺完全抓住神经变性是如何响应这些条件的。
斑马鱼对实时成像的适用性代表了与其他模型的显着优势
体内脑膜发展。在AIM 1中,我将使用新开发的转基因线标记板 -
体内脑膜和脑膜周围细胞群体揭示了这些的发育起源
使用高分辨率共聚焦成像进行谱系跟踪研究的组合,传播
电子显微镜以表征其细胞结构,以及单细胞和“ Ribotag” RNA-
测序以识别在脑膜种群中调节的基因程序。 AIM 2将揭示功能
该脑膜细胞在支持CNS稳态和维护方面发挥作用。分析将使用
易于使用的突变体,这些突变体存在脑膜发育中的缺陷。另外,作为公正
方法,我将利用正向遗传诱变筛选来发现适当的基因
脑膜开发和功能。最后,体内高分辨率共焦成像和
体外细胞培养分析将用于发现由
野生型和突变斑马鱼种群中的年龄,饮食和感染(AIM 3)。这些目标是
旨在扩大当前脑膜细胞成分的知识,控制的遗传信号
他们的发展,以及对他们与脉管系统的互动的更好理解。该建议提供
血管发育生物学领域的基本利基市场,我可以通过该领域发起未来的任期 -
跟踪研究教师职位。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Marina Venero Galanternik其他文献
Marina Venero Galanternik的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
多氯联苯与机体交互作用对生物学年龄的影响及在衰老中的作用机制
- 批准号:82373667
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
恒星模型中氧元素丰度的变化对大样本F、G、K矮星年龄测定的影响
- 批准号:12303035
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于年龄和空间的非随机混合对性传播感染影响的建模与研究
- 批准号:12301629
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
母传抗体水平和疫苗初种年龄对儿童麻疹特异性抗体动态变化的影响
- 批准号:82304205
- 批准年份:2023
- 资助金额:20 万元
- 项目类别:青年科学基金项目
中国东部地区大气颗粒物的年龄分布特征及其影响因素的模拟研究
- 批准号:42305193
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
The Influence of Lifetime Occupational Experience on Cognitive Trajectories Among Mexican Older Adults
终生职业经历对墨西哥老年人认知轨迹的影响
- 批准号:
10748606 - 财政年份:2024
- 资助金额:
$ 24.9万 - 项目类别:
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
$ 24.9万 - 项目类别:
Understanding the Mechanisms and Consequences of Basement Membrane Aging in Vivo
了解体内基底膜老化的机制和后果
- 批准号:
10465010 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Safety and Tolerability of TASIS-Peanut (Targeted Allergen Specific Immunotherapy within the Skin) patch for the Treatment of Peanut Allergy
TASIS-花生(皮肤内靶向过敏原特异性免疫疗法)贴剂治疗花生过敏的安全性和耐受性
- 批准号:
10551184 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Sustained eIF5A hypusination at the core of brain metabolic dysfunction in TDP-43 proteinopathies
持续的 eIF5A 抑制是 TDP-43 蛋白病脑代谢功能障碍的核心
- 批准号:
10557547 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别: