Mechanopriming for cell engineering
用于细胞工程的机械引发剂
基本信息
- 批准号:10737574
- 负责人:
- 金额:$ 50.84万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-15 至 2027-05-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAutologousBiologyBiomedical TechnologyBiophysicsBiosensorBrainCell NucleusCell ReprogrammingCell physiologyCellsChromatinChromatin StructureClustered Regularly Interspaced Short Palindromic RepeatsCuesDNADNA MethylationDiseaseDisease modelDissociationDrug ScreeningEpigenetic ProcessFibroblastsGene ActivationGene ExpressionGenesGenomeGenomicsHeterochromatinHistonesIndividualInjuryMapsMechanicsMediatingMethodsMicrofluidic MicrochipsMicrofluidicsMolecular ConformationNerve TissueNeuronsNeurosciencesNuclearNuclear LaminaPatientsPeripheralProcessProtocols documentationPublicationsRegenerative MedicineRegulationRoleSiteSomatic CellSourceSpinal CordTechnologyTestingThree-dimensional analysisTissue EngineeringTranslationsWorkcell growthcellular engineeringchromatin remodelingdesigndrug discoveryepigenetic profilingepigenetic regulationepigenomicsfabricationgenome-wideimprovedinnovationinsightmicrodevicemigrationmultidisciplinarymultiple omicsnervous system disorderpermissivenessresponsescale uptranscription factortranscriptomic profiling
项目摘要
Project Summary
Cell reprogramming represents a major advancement in biology, and has wide applications in
regenerative medicine, disease modeling and drug screening. Somatic cells such as fibroblasts can be
directly converted into induced neuronal (iN) cells via the forced expression of three transcription factors:
Ascl1, Brn2 and Myt1l (BAM). However, a major challenge of cell reprogramming, especially iN
reprogramming, is the low reprogramming efficiency, which has limited the translation of this technology
for biomedical applications. Biophysical factors from the microenvironment have been shown to regulate
many aspects of cell functions such as cell growth, migration and differentiation. Recently, we have shown
that mechanical deformation of cell nucleus through microfluidic channels can promote open chromatin
structure and enhance cell reprogramming, yet the underlying mechanisms are not well understood. Based
on our recent findings, we hypothesize that a mechanopriming process such as mechanical squeezing of
cell nucleus can induce NL reorganization and a permissive chromatin state to facilitate the activation of
neuronal genes in the heterochromatin of fibroblasts, which promotes iN reprogramming and CRISPR-
mediated gene editing/activation. To test our hypothesis, we propose three Specific Aims: (1) To
investigate how nuclear deformation modulates the epigenetic state to enhance iN reprogramming; (2) To
determine the role of nuclear lamina in mediating nuclear deformation-induced LAD dissociation,
epigenetic changes and iN reprogramming; (3) To investigate the enhancement of CRISPR-mediated
neuronal gene activation by mechanical squeezing. We have assembled a multidisciplinary team with
expertise on cell engineering, microdevice fabrication, high-throughput genomic and epigenomic analysis,
neuroscience, biosensors and CRISPR gene editing to work together and investigate the mechanical
regulation of epigenetic state and cell reprogramming. We propose to optimize a high-throughput
microfluidic device, further investigate the causative mechanisms and profile the genome-wide site-specific
epigenetic changes induced by nuclear deformation, which can provide a rational basis for the design of
site-specific gene editing for cell engineering. Accomplishment of this project will advance our
understanding of how biophysical factors regulate cell reprogramming and the epigenetic state, and
unravel new mechanisms of cell fate determination, which will have wide applications in gene editing, cell
and tissue engineering, disease modeling and drug discovery.
项目摘要
细胞重编程代表生物学的重大进步,并且在
再生医学,疾病建模和药物筛查。体细胞(例如成纤维细胞)可以是
通过强制表达三个转录因子的强制表达直接转化为诱导的神经元(IN)细胞:
ASCL1,BRN2和MYT1L(BAM)。但是,细胞重编程的重大挑战,尤其是在
重编程是低重编程效率,它限制了该技术的翻译
用于生物医学应用。微环境的生物物理因子已被证明是调节的
细胞功能的许多方面,例如细胞生长,迁移和分化。最近,我们显示了
通过微流体通道对细胞核的机械变形可以促进开放的染色质
结构并增强细胞重编程,但基本机制尚不清楚。基于
根据我们最近的发现,我们假设一个机械辅导过程,例如机械挤压
细胞核可以诱导NL的重组和允许的染色质状态,以促进
成纤维细胞异染色质中的神经元基因,该基因在重新编程和CRISPR-中促进
介导的基因编辑/激活。为了检验我们的假设,我们提出了三个具体目标:(1)
研究核变形如何调节表观遗传状态以增强重编程; (2)至
确定核层中核层中介导核变形引起的LAD解离的作用,
表观遗传变化和重编程; (3)调查CRISPR介导的增强
神经元基因通过机械挤压激活。我们已经组建了一个多学科团队
细胞工程,微电位制造,高通量基因组和表观基因组分析的专业知识,
神经科学,生物传感器和CRISPR基因编辑一起工作并研究机械
调节表观遗传状态和细胞重编程。我们建议优化高通量
微流体装置,进一步研究了因果机制,并介绍了全基因组特异性的
核变形引起的表观遗传变化,这可以为设计提供合理的基础
细胞工程特定地点基因编辑。完成这个项目将推动我们的
了解生物物理因素如何调节细胞重编程和表观遗传状态,以及
揭示细胞命运确定的新机制,该机制将在基因编辑中具有广泛的应用,细胞
以及组织工程,疾病建模和药物发现。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Song Li其他文献
Song Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Song Li', 18)}}的其他基金
Nanoparticles-mediated combination therapy for breast cancer
纳米颗粒介导的乳腺癌联合疗法
- 批准号:
10617544 - 财政年份:2023
- 资助金额:
$ 50.84万 - 项目类别:
Multimodal wireless electrical stimulation for tissue regeneration
用于组织再生的多模式无线电刺激
- 批准号:
10615764 - 财政年份:2022
- 资助金额:
$ 50.84万 - 项目类别:
Study of Interleukin 33 as a new immunotherapy of lung cancer
白细胞介素33作为肺癌新型免疫疗法的研究
- 批准号:
10703786 - 财政年份:2022
- 资助金额:
$ 50.84万 - 项目类别:
Regulation of cell reprogramming by matrix stiffness
通过基质硬度调节细胞重编程
- 批准号:
10281141 - 财政年份:2021
- 资助金额:
$ 50.84万 - 项目类别:
Regulation of cell reprogramming by matrix stiffness
通过基质硬度调节细胞重编程
- 批准号:
10491279 - 财政年份:2021
- 资助金额:
$ 50.84万 - 项目类别:
Regulation of cell reprogramming by matrix stiffness
通过基质硬度调节细胞重编程
- 批准号:
10687264 - 财政年份:2021
- 资助金额:
$ 50.84万 - 项目类别:
Study of Interleukin 33 as a new immunotherapy of lung cancer
白细胞介素33作为肺癌新型免疫疗法的研究
- 批准号:
10442707 - 财政年份:2019
- 资助金额:
$ 50.84万 - 项目类别:
Study of Interleukin 33 as a new immunotherapy of lung cancer
白细胞介素33作为肺癌新型免疫疗法的研究
- 批准号:
10202507 - 财政年份:2019
- 资助金额:
$ 50.84万 - 项目类别:
Platelets-Mediated Delivery of Checkpoint Inhibitors for Post-Surgical Cancer Immunotherapy
用于术后癌症免疫治疗的血小板介导的检查点抑制剂递送
- 批准号:
10668316 - 财政年份:2019
- 资助金额:
$ 50.84万 - 项目类别:
相似国自然基金
源于临床级人拓展多能性干细胞的自体线粒体移植对卵母细胞受精及早期胚胎发育的改善效应和作用机制研究
- 批准号:82301872
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于自体荧光光谱的感染伤口细菌在体快速检测技术研究及应用
- 批准号:62305348
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
失活肿瘤细胞用于自体三阴性乳腺癌PDX模型的个性化靶向治疗及无创分子影像监测
- 批准号:82302238
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于自体血管床和微图案化技术构建有序排列的血管化膀胱平滑肌的研究
- 批准号:82300762
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
输送自体融合免疫细胞调节肿瘤微环境用于三阴性乳腺癌治疗的研究
- 批准号:82303754
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Improving in vitro preantral follicle development using novel bioengineered culture systems and pre-theca-like cells as a strategy for assisted reproduction
使用新型生物工程培养系统和卵泡膜前样细胞作为辅助生殖策略改善体外窦前卵泡发育
- 批准号:
10749434 - 财政年份:2023
- 资助金额:
$ 50.84万 - 项目类别:
Human mast cells as a platform for new cancer immunotherapy strategies
人类肥大细胞作为新癌症免疫治疗策略的平台
- 批准号:
10729728 - 财政年份:2023
- 资助金额:
$ 50.84万 - 项目类别:
Engineering detours around the biologic barriers to allogeneic, iPSC-derived CAR T immunotherapy
工程绕开了同种异体、iPSC 衍生的 CAR T 免疫疗法的生物障碍
- 批准号:
10607952 - 财政年份:2023
- 资助金额:
$ 50.84万 - 项目类别:
Modulation of MicroRNAs to Engineer a Layered Osteochondral Tissue Construct
调节 MicroRNA 设计分层骨软骨组织结构
- 批准号:
10606179 - 财政年份:2023
- 资助金额:
$ 50.84万 - 项目类别:
Dynamic analysis of beta cell attacks in response to virus infection in Human pancreatic slices
人胰腺切片中β细胞响应病毒感染的攻击的动态分析
- 批准号:
10674127 - 财政年份:2023
- 资助金额:
$ 50.84万 - 项目类别: