Post-transcriptional Regulatory Networks
转录后调控网络
基本信息
- 批准号:10736019
- 负责人:
- 金额:$ 69.29万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-04 至 2027-05-31
- 项目状态:未结题
- 来源:
- 关键词:3&apos Untranslated RegionsAlternative SplicingAmino Acid SequenceArtificial IntelligenceBindingBinding SitesBiochemicalBiological AssayBiological ModelsCalibrationCatalogsCellsCodeCollaborationsCollectionComputer ModelsComputer softwareDataData SetDefectDevelopmentEvolutionFamilyFundingGenesGenetic ResearchGenomicsGerm-Line MutationHealthHomology ModelingHumanHuman GeneticsHuman GenomeHuman ResourcesIn VitroIndustry StandardInstructionKnowledgeLearningLocationMalignant NeoplasmsMapsMeasuresMessenger RNAMethodsModelingMutationNeurodegenerative DisordersNuclear ExportOrganismOutcomePeptidesPlayPoly APolyadenylationPost-Transcriptional RegulationProceduresProcessProtein Binding DomainProteinsPublicationsRNARNA BindingRNA Recognition MotifRNA SequencesRNA SplicingRNA StabilityRNA-Binding ProteinsRegulationRegulatory ElementResearchResearch SupportRoleScanningScientistSomatic MutationSourceSpecificitySpeedStructureStudy modelsTechniquesTrainingTranscriptTranslationsValidationVariantVertebratesVocabularyYeastsZebrafishZinc Fingersanticancer researchcancer geneticsdeep neural networkdetection methodexperienceflyfollow-upgenomic datahuman diseaseimprovedin silicoin vivoknock-downmachine learning modelmodel organismneurodevelopmentopen sourceposttranscriptionalpredictive modelingpreferenceprotein structure predictionreconstructiontooltranscription regulatory networktranscriptome sequencingtranscriptomicsuser-friendlyweb portalweb-based tool
项目摘要
RNA-binding proteins (RBPs) play key roles in RNA splicing, editing, nuclear export, translation, turnover, and
subcellular localization. Reflecting their importance, RBPs and their cis-regulatory elements (CREs) have
broad implications in human health: mutations in RBPs or CREs have well-established roles in cancer,
developmental defects, particularly in neural development, and in neural degenerative diseases.
Using a combination of a high-throughput, in-vitro-selection-based RNA binding assay, RNAcompete, and
machine learning (ML) models trained to map from an RBP’s protein sequence to its RNA binding preferences,
this project will endeavor to assign RNA sequence- and structural-context binding preferences to all human
RBPs, all vertebrate RBPs, and the vast majority of metazoan RBPs. These specificities will then be used to
detect and assign function to RBPs and cis-regulatory elements (CREs) in human genomes, as well as those
of other model organisms. The specificities, machine learning models, and predicted CREs will be distributed
widely via publication, open-source software, and user-friendly web tools like cisBP-RNA.
This project has the potential to transform cancer and human genetics research supporting the estimation of
the functional impact of germline or somatic mutations on post-transcriptional regulation (PTR). By improving
the reconstruction of PTR networks, this project will speed research in this emerging field toward a complete
understanding of this key process. This project will also permit the study of the evolution of PTR by developing
tools to reconstruct PTR networks in other organisms based solely on genomic and transcriptomic data.
RNAcompete will be used to assess the RNA sequence-binding preferences of the 511 still-uncharacterized
RBPs in humans and D. rerio (zebrafish), thereby establishing a complete catalog of binding preferences for all
likely sequence-specific RBPs in these two species. These data will be combined with binding data for >500
other RBPs from a variety of sources and used to train an ML model that reconstructs RNA-binding
preferences given RBP protein sequences. These models will also leverage recent advances in de novo
prediction of protein structure from sequence. RBPs will be assigned roles in PTR based on (i) the location and
conservation, in human transcripts of their predicted target CREs, (ii) the correlation of their expression with
the PTR fate of their putative target transcripts, and (iii) other, more powerful regression methods like the
Inferelator. CRE predictions will be continuously improved using in vivo data to recalibrate in vitro motif models
and to improve in silico predictions of transcript RNA secondary structure. Our predicted CREs and
reconstructed PTR networks will be validated by comparisons with in vivo data collected by our team and
others.
RNA结合蛋白(RBP)在RNA剪接,编辑,核导出,翻译,周转和周转和
亚细胞定位。反映其重要性,RBP及其顺式调节元素(CRE)具有
人类健康的广泛影响:RBP或CRE的突变在癌症中具有完善的作用,
发育缺陷,特别是在神经发育和神经退行性疾病中。
结合使用高通量的基于体外选择的RNA结合测定,RNACOMPETE和
机器学习(ML)模型训练从RBP的蛋白质序列映射到其RNA结合偏好,
该项目将努力为所有人类分配RNA序列和结构上下文结合偏好
RBP,所有脊椎动物RBP和绝大多数后生RBP。这些规格将用于
检测并分配了人类基因组中的RBP和顺式调节元件(CRE)以及那些
其他模型生物。规格,机器学习模型和预测的CRE将分发
通过出版物,开源软件和用户友好的Web工具(如CISBP-RNA)广泛广泛。
该项目有可能改变癌症和人类遗传学研究,以支持估计
种系或体突变对转录后调节(PTR)的功能影响。通过改进
PTR网络的重建,该项目将加速在这个新兴领域的研究
了解这个关键过程。该项目还将通过开发PTR的发展研究
仅基于基因组和转录组数据重建其他生物体中PTR网络的工具。
RNACOMPETE将用于评估511仍在纯化的RNA序列结合偏好
人类和D. rerio(斑马鱼)的RBP,从而为所有人建立了完整的绑定偏好目录
这两个物种可能是序列特异性的RBP。这些数据将与> 500的绑定数据结合
来自各种来源的其他RBP,用于训练重建RNA结合的ML模型
偏好给定RBP蛋白序列。这些模型还将利用从头开始的最新进展
从序列预测蛋白质结构。 RBP将根据(i)位置和
保护,在人类预测的目标cr中,(ii)其表达的相关性
其推定目标成绩单的PTR命运,以及(iii)其他更强大的回归方法(例如
地狱。使用体内数据将不断改进CRE预测以重新校准体外基序模型
并改善转录物RNA二级结构的硅预测。我们预测的CRE和
重建的PTR网络将通过与我们的团队收集的体内数据进行比较来验证
其他的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Timothy Hughes其他文献
Timothy Hughes的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Timothy Hughes', 18)}}的其他基金
Measuring and describing nucleosome remodeler sequence preferences
测量和描述核小体重塑序列偏好
- 批准号:
10526907 - 财政年份:2022
- 资助金额:
$ 69.29万 - 项目类别:
Determining the sequence and structure specificities of RNA-binding proteins
确定 RNA 结合蛋白的序列和结构特异性
- 批准号:
8075668 - 财政年份:2010
- 资助金额:
$ 69.29万 - 项目类别:
Determining the sequence and structure specificities of RNA-binding proteins
确定 RNA 结合蛋白的序列和结构特异性
- 批准号:
7852462 - 财政年份:2010
- 资助金额:
$ 69.29万 - 项目类别:
Determining the sequence and structure specificities of RNA-binding proteins
确定 RNA 结合蛋白的序列和结构特异性
- 批准号:
8265216 - 财政年份:2010
- 资助金额:
$ 69.29万 - 项目类别:
相似海外基金
The mechanism of CELF1 upregulation and its role in the pathogenesis of Myotonic Dystrophy Type 1
CELF1上调机制及其在强直性肌营养不良1型发病机制中的作用
- 批准号:
10752274 - 财政年份:2024
- 资助金额:
$ 69.29万 - 项目类别:
Genetic and pharmacologic elimination of myotonia from myotonic dystrophy type 1
通过遗传和药物消除 1 型强直性肌营养不良引起的肌强直
- 批准号:
10750357 - 财政年份:2023
- 资助金额:
$ 69.29万 - 项目类别:
Biogenesis of mRNA-derived telomerase long noncoding RNA
mRNA 衍生端粒酶长非编码 RNA 的生物发生
- 批准号:
10638429 - 财政年份:2023
- 资助金额:
$ 69.29万 - 项目类别:
The role of RNA binding proteins in heart development and congenital heart defects
RNA结合蛋白在心脏发育和先天性心脏缺陷中的作用
- 批准号:
10827567 - 财政年份:2023
- 资助金额:
$ 69.29万 - 项目类别:
Design, Synthesis and Efficacy of New Small Molecule Therapeutics to Impede Myotonic Dystrophy
预防强直性肌营养不良的新型小分子疗法的设计、合成和功效
- 批准号:
10841887 - 财政年份:2023
- 资助金额:
$ 69.29万 - 项目类别: