Evaluation of genetic variants affecting platelet function with CRISPR HDR in human megakaryocytes
利用 CRISPR HDR 评估影响人类巨核细胞血小板功能的遗传变异
基本信息
- 批准号:10737494
- 负责人:
- 金额:$ 53.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2028-06-30
- 项目状态:未结题
- 来源:
- 关键词:AdultAffectAgonistAlpha GranuleAmino AcidsApplied GeneticsBindingBlood Coagulation DisordersBlood Platelet DisordersBlood PlateletsCD34 geneCRISPR/Cas technologyCell Differentiation processCell LineCellsClassificationClinicalClinical ManagementCloningClustered Regularly Interspaced Short Palindromic RepeatsCommunitiesDNADataDatabasesDecision MakingDiagnosisDiagnosticDiseaseEvaluationFibrinogenFutureGene ExpressionGenerationsGenesGeneticGenetic VariationGoalsHamstersHemorrhageHigh-Throughput DNA SequencingHigh-Throughput Nucleotide SequencingHumanImmunodeficient MouseIndividualInheritedInsertion MutationIntegrinsInvestigationLibrariesMeasuresMediatingMegakaryocytesMethodsMissense MutationModelingModificationMusMutagenesisMutationOvaryPAC1 phosphatasePathogenicityPatientsPhenotypePhysiologicalPhysiologyPoint MutationPositioning AttributeProductionProteinsReportingResearchSingle-Stranded DNASortingSpecific qualifier valueSurveysTestingThrombastheniaTimeUmbilical Cord BloodValidationVariantVirusWorkclinical applicationclinically relevantdisease classificationexome sequencingfunctional mimicsgene functiongenetic disorder diagnosisgenetic variantgenome sequencinggenomic locushigh throughput screeninghuman DNAin vivoindexinginnovationinsightloss of functionmouse modelmutantnoveloverexpressionplatelet functionplatelet phenotypeprecision medicinerepairedresponsetargeted sequencingtoolvariant of unknown significancevirulence gene
项目摘要
Abstract
Numerous genetic variants associated with inherited platelet function disorders are classified as variants of
unknown significance (VUS) because they lack functional evaluation. The functional validation of the genetic
causes of platelet mediated disease has been difficult because of the inability to make precise genetic
modifications in anucleate human platelets. As the precursor to platelets, megakaryocytes share many
functions with platelets and are the natural choice for platelet function studies, but have been traditionally
difficult to genetically modify
. In this proposal, we develop a non-viral and selection free CRISPR/CAS9
approach to make precise gene edits in human cord blood and adult CD34+ cell derived megakaryocytes
using homology directed repair. We apply the approach to functionally and mechanistically define VUS in
ITGA2B, mutations in which can cause the bleeding disorder Glanzmann’s Thrombasthenia. Our preliminary
data demonstrate the precise generation of insertions and point mutations in the gene ITGA2B in >95% of
megakaryocytes. We show that megakaryocytes harboring point mutations or insertions in ITGA2B that are
known to cause Glanzmann’s mimic functional responses observed for platelets from patients.
In Aim 1 we generate 57 VUS or likely pathogenic variants in ITGA2B and test their effect on platelet-like
functional responses in megakaryocytes towards their clinical reclassification, while at the same time defining
rules for efficient homology directed repair in megakaryocytes. We further deep phenotype and mechanistically
dissect select ITGA2B variants, including in human platelets generated in mice. In Aim 2, we use homology
directed saturating mutagenesis in CD34+ derived megakaryocytes, followed by high throughput sequencing,
to identify all functional amino acid changes across mutation hot-spots of ITGA2B.
This work is innovative: we use a novel and straightforward approach to generate precise point mutations
and insertions at unprecedented levels in human CD34+ cells differentiated into megakaryocytes. We use
innovative methods, including the generation of gene edited human platelets in mice, and saturating
mutagenesis functional screens in primary cells, to examine the effect of genetic variants on
megakaryocyte/platelet functions. This work is significant because it will result in the clinical classification of
genetic variants that can be directly applied for the genetic diagnosis of patients, and provide hope for future
treatment options. Our studies will also provide new mechanistic insights into how variants affect ITGA2B
production and function in a physiologically relevant human primary cell.
抽象的
与遗传血小板功能障碍相关的许多遗传变异被归类为
未知的意义(VUS)是因为它们缺乏功能评估。通用的功能验证
血小板介导的疾病的原因很困难,因为无法进行精确的通用
在Anugleate人血小板中进行修饰。作为血小板的前体,巨核细胞分享了许多
血小板的功能是血小板功能研究的自然选择,但传统上一直是
难以基因修改
。在此提案中,我们开发了一个非病毒和选择免费CRISPR/CAS9
在人脐带血和成人CD34+细胞衍生的巨核细胞中进行精确基因编辑的方法
使用同源性维修。我们将方法应用于功能和机械定义VUS
itga2b,突变会导致出血障碍Glanzmann的血栓性疾病。我们的初步
数据证明了> 95%的基因itga2b中插入和点突变的精确生成
巨核细胞。我们表明,含有点突变或插入itga2b的巨核细胞是
已知会导致对患者血小板观察到的Glanzmann的模拟功能反应。
在AIM 1中,我们在ITGA2B中产生57个VU或可能的致病变异,并测试它们对血小板样的影响
巨核细胞对其临床重分类的功能反应,同时定义
有效同源性修复巨核细胞的规则。我们进一步深入表型和机理
剖析选择ITGA2B变体,包括在小鼠中产生的人血小板中。在AIM 2中,我们使用同源性
CD34+衍生的巨核细胞中的定向饱和诱变,然后进行高吞吐量测序,
确定跨itga2b突变热点之间的所有功能性氨基酸变化。
这项工作是创新的:我们使用一种新颖而直接的方法来产生精确点突变
在人CD34+细胞中前所未有水平的插入中,分化为巨核细胞。我们使用
创新方法,包括基因的产生,在小鼠中编辑了人血小板,并饱和
在原代细胞中的诱变功能筛选,以检查遗传变异的影响
巨核细胞/血小板功能。这项工作很重要,因为它将导致
可以直接用于患者遗传诊断的遗传变异,并为未来提供希望
治疗选择。我们的研究还将提供有关变体如何影响itga2b的新机械见解
在物理相关的人类原代细胞中的生产和功能。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JESSE ROWLEY其他文献
JESSE ROWLEY的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JESSE ROWLEY', 18)}}的其他基金
Mitochondrial fusion protein MFN2 prevents platelet death and dysfunction
线粒体融合蛋白 MFN2 可预防血小板死亡和功能障碍
- 批准号:
10525224 - 财政年份:2019
- 资助金额:
$ 53.7万 - 项目类别:
Mitochondrial fusion protein MFN2 prevents platelet death and dysfunction
线粒体融合蛋白 MFN2 可预防血小板死亡和功能障碍
- 批准号:
10064635 - 财政年份:2019
- 资助金额:
$ 53.7万 - 项目类别:
Mitochondrial fusion protein MFN2 prevents platelet death and dysfunction
线粒体融合蛋白 MFN2 可预防血小板死亡和功能障碍
- 批准号:
10308677 - 财政年份:2019
- 资助金额:
$ 53.7万 - 项目类别:
相似国自然基金
β2AR激动剂与微秒电刺激对大鼠肛提肌线粒体有氧代谢酶及其多模态影像表型的影响研究
- 批准号:82101697
- 批准年份:2021
- 资助金额:24.00 万元
- 项目类别:青年科学基金项目
β2AR激动剂与微秒电刺激对大鼠肛提肌线粒体有氧代谢酶及其多模态影像表型的影响研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
环境激素壬基酚对变应性鼻炎的影响及其对GPER特异性激动剂G-1在变应性鼻炎治疗作用中的干扰机制研究
- 批准号:82000963
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
促生长激素释放激素激动剂抑制平滑肌细胞转分化对动脉粥样硬化的影响及机制研究
- 批准号:81900389
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
五羟色胺2C受体激动剂对2型糖尿病小鼠β细胞功能的影响及机制研究
- 批准号:81803644
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Role of SIK3 in PKA/mTORC1 regulation of adipose browning
SIK3 在 PKA/mTORC1 调节脂肪褐变中的作用
- 批准号:
10736962 - 财政年份:2023
- 资助金额:
$ 53.7万 - 项目类别:
Compartmentalized signaling and crosstalk in airway myocytes
气道肌细胞中的区室化信号传导和串扰
- 批准号:
10718208 - 财政年份:2023
- 资助金额:
$ 53.7万 - 项目类别:
Prevention of intracellular infection in diabetic wounds by commensal Staphylococcus epidermidis
共生表皮葡萄球菌预防糖尿病伤口细胞内感染
- 批准号:
10679628 - 财政年份:2023
- 资助金额:
$ 53.7万 - 项目类别:
Investigating non-canonical mechanisms of endogenous opioids on motivation in dorsal midbrain
研究内源性阿片类药物对背侧中脑动机的非典型机制
- 批准号:
10624699 - 财政年份:2023
- 资助金额:
$ 53.7万 - 项目类别:
A functional characterization of Brugia malayi GABA-gated chloride channels: an unexplored target for antifilarial therapeutics
马来丝虫 GABA 门控氯离子通道的功能表征:抗丝虫治疗的未探索靶点
- 批准号:
10742453 - 财政年份:2023
- 资助金额:
$ 53.7万 - 项目类别: