Cancer Cluster Morphology
癌簇形态学
基本信息
- 批准号:7600303
- 负责人:
- 金额:$ 37.54万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-09-14 至 2010-08-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAddressAreaArtsAtlas of Cancer Mortality in the United StatesBiological MarkersBusinessesCancer BurdenCancer ClusterCancer ControlCancer EtiologyCase StudyCensusesCharacteristicsClassificationCluster AnalysisComplexComputer softwareCountCountyDataDemographyDetectionEconomicsEducational process of instructingEnvironmentEnvironmental Risk FactorEpidemiologic StudiesEpidemiologyEvaluationGenderGenetic ResearchGeographic Information SystemsGeographyHealthImageryIncidenceInformation SystemsIntelligenceInvestigationKnowledgeLeadLifeLiteratureLocationMalignant NeoplasmsMalignant neoplasm of pancreasMapsMedical SurveillanceMeta-AnalysisMethodologyMethodsMichiganModelingMorphologyNational Cancer InstituteNumbersOutcomePaperPatternPeer ReviewPerformancePhasePopulationPopulation DistributionsPopulation StudyPopulations at RiskPreparationPrincipal InvestigatorProbabilityPublic HealthPublicationsRaceRandomizedRegistriesRelative (related person)Relative RisksReportingResearchResearch PersonnelResolutionRiskRisk FactorsScanningSensitivity and SpecificityShapesSimulateSmall Business Funding MechanismsSmall Business Innovation Research GrantSoftware ToolsSpecific qualifier valueSystemTechniquesTechnologyTestingThinkingTimeUncertaintyUnited States National Institutes of HealthUniversitiesUse of New TechniquesVariantWaxesWorkanalytical toolanimationbasecancer riskcommercial applicationcommercializationcommunity based participatory researchdata modelingdata structuredaydemographicsdesignfallsimprovedinnovationlecturesmalemethod developmentmetropolitanmortalitynext generationnovelnovel strategiesprogramsprototyperapid growthsimulationsizesocialsoftware developmentsoftware systemsstatisticssymposiumtechnological innovationtool
项目摘要
DESCRIPTION (provided by applicant): This project will develop a new, meta-analytic approach for evaluating cancer clusters of flexible shape called Cluster Morphology Analysis (CMA). To date, two of the major deficiencies of geographic studies of cancer are that they often assume clusters have a specific shape (e.g. circle or ellipse) and do not evaluate statistical power using the geography, at-risk population, demographics, covariates and numbers of observed cases of the cancer under investigation. These limitations are overcome by this project. Power analyses will be conducted for 11 clustering techniques using a suite of plausible clusters of different sizes, relative risks and shapes. The results are then ranked by statistical power and by the proportion of false positives, under the rationale that the objective of cluster-based cancer surveillance should be to (1) find true clusters while (2) avoiding false clusters. CMA then synthesizes the results of those clustering methods found to have the best statistical performance. This approach is applied to pancreatic cancer incidence and mortality in Michigan, focusing on three counties that comprise a significant cluster that persists and grows from 1950 to the present day. CMA is a significant advance over clustering approaches that assume just one shape and rely on only one clustering method. The major innovation is the creation of methods and software for analyzing cancer incidence and mortality data to accurately identify flexibly shaped clusters defined by geographic sub-population of excess cancer risk. PUBLIC HEALTH RELEVANCE: The techniques and software from this project will provide a more concise and accurate description of cancer clusters via (1) the accurate detection of clusters founded on flexible shapes, rather than on arbitrary shape "templates" such as circles and ellipses; (2) the automated evaluation of the statistical power of clustering techniques for the specific geography, cancer and sub-population being scrutinized by the software user; and (3) Cluster Morphology Analysis that synthesizes results across clustering approaches to more accurately identify true clusters. To our knowledge the techniques and software from this project will be the first to address all of these factors within a single, comprehensive framework.
描述(由申请人提供):该项目将开发一种新的,元分析的方法,用于评估称为群集形态分析(CMA)的柔性形状的癌症簇。迄今为止,癌症地理研究的两个主要缺陷是,他们通常认为簇具有特定形状(例如圆圈或椭圆形),并且没有使用地理位置,高危人群,人口统计学,协变量和观察到的癌症病例的数量来评估统计能力。该项目克服了这些限制。将使用一套不同尺寸,相对风险和形状的合理簇进行11种聚类技术的功率分析。然后,根据统计能力和假阳性的比例对结果进行排名,这是基于集群的癌症监测的目的应为(1)找到真正的簇,而(2)避免使用假簇。然后,CMA综合了这些聚类方法的结果,发现具有最佳的统计性能。这种方法应用于密歇根州的胰腺癌的发病率和死亡率,重点是三个县,其中包括一个持续并从1950年到今天的重要集群。 CMA是仅采用一种形状并仅依靠一种聚类方法的聚类方法的重大进步。主要的创新是创建用于分析癌症发病率和死亡率数据的方法和软件,以准确识别由多余癌症风险的地理亚群来定义的灵活形状的簇。 公共卫生相关性:该项目的技术和软件将通过(1)(1)对柔性形状上建立的群集的准确检测,而不是在任意形状的“模板”(例如圆圈和椭圆机上),通过(1)准确地检测到癌症簇的技术和软件; (2)软件用户对聚类技术的统计能力进行自动评估; (3)群集形态分析,综合了跨聚类方法的结果,以更准确地识别真正的簇。据我们所知,该项目的技术和软件将是第一个在一个全面的框架内解决所有这些因素的技术。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Geoffrey M. Jacquez其他文献
Geoffrey M. Jacquez的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Geoffrey M. Jacquez', 18)}}的其他基金
Exploratory evaluation of homomorphic cryptography for confidentiality protection
同态密码技术机密性保护的探索性评估
- 批准号:
8301083 - 财政年份:2012
- 资助金额:
$ 37.54万 - 项目类别:
Case-only Cancer Clustering for Mobile Populations
流动人口的仅病例癌症聚类
- 批准号:
7536439 - 财政年份:2008
- 资助金额:
$ 37.54万 - 项目类别:
Space-Time Clustering of Testicular Cancer Using Residential Histories
使用居住史进行睾丸癌的时空聚类
- 批准号:
7239785 - 财政年份:2007
- 资助金额:
$ 37.54万 - 项目类别:
Space-Time Technology for Reconstructing Exposure in Cancer Epidemiology Studies
癌症流行病学研究中重建暴露的时空技术
- 批准号:
7404216 - 财政年份:2007
- 资助金额:
$ 37.54万 - 项目类别:
Space-Time Clustering of Testicular Cancer Using Residential Histories
利用居住史进行睾丸癌的时空聚类
- 批准号:
7452481 - 财政年份:2007
- 资助金额:
$ 37.54万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Genetic and Environmental Influences on Individual Sweet Preference Across Ancestry Groups in the U.S.
遗传和环境对美国不同血统群体个体甜味偏好的影响
- 批准号:
10709381 - 财政年份:2023
- 资助金额:
$ 37.54万 - 项目类别:
A Next Generation Data Infrastructure to Understand Disparities across the Life Course
下一代数据基础设施可了解整个生命周期的差异
- 批准号:
10588092 - 财政年份:2023
- 资助金额:
$ 37.54万 - 项目类别:
Bayesian Statistical Learning for Robust and Generalizable Causal Inferences in Alzheimer Disease and Related Disorders Research
贝叶斯统计学习在阿尔茨海默病和相关疾病研究中进行稳健且可推广的因果推论
- 批准号:
10590913 - 财政年份:2023
- 资助金额:
$ 37.54万 - 项目类别:
Preventing Firearm Suicide Deaths Among Black/African American Adults
防止黑人/非裔美国成年人因枪支自杀死亡
- 批准号:
10811498 - 财政年份:2023
- 资助金额:
$ 37.54万 - 项目类别: