Implantable, FET-based, Multimodal Sensor for Biomedical Applications
适用于生物医学应用的可植入、基于 FET 的多模态传感器
基本信息
- 批准号:7538751
- 负责人:
- 金额:$ 15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-09-30 至 2010-08-31
- 项目状态:已结题
- 来源:
- 关键词:AcuteAddressAdoptionAnimal ExperimentationAnimalsAnticonvulsantsArchitectureAreaBehavioralBindingBiocompatibleBiocompatible MaterialsBiologicalBrainCaringChargeChemicalsChronicClinicalCollaborationsCompatibleComplementComputersDataData CollectionDecision MakingDepthDevicesDiagnosticDiagnostic ProcedureDyesElectrodesElectroencephalographyElectronicsEnsureEnvironmentEpilepsyEquipmentFacility Construction Funding CategoryFunctional Magnetic Resonance ImagingFunctional disorderFutureGlutamatesGoalsHumanHuman DevelopmentHydrogenImaging TechniquesImplantIn SituIntracranial PressureIntractable EpilepsyInvadedIonsLocalizedLocationMagnetic Resonance ImagingManufacturer NameMapsMarketingMeasurementMeasuresMedicalMethodsMetricMicrodialysisModalityMonitorNeurosciencesNumbersOperative Surgical ProceduresOpticsPatientsPerformancePharmaceutical PreparationsPhasePhase II Clinical TrialsPotassiumRangeRateRattusResearchResistanceResolutionSamplingSeizuresSemiconductorsSideSignal TransductionSiliconSleepSolutionsSpecific qualifier valueSpeedStructureSurfaceSystemTechnologyTemperatureTestingTimeTransistorsTraumaTraumatic Brain InjuryUniversitiesWeekWireless Technologybasebiomaterial compatibilitybrain electrical activitycommercializationcostdaydesigndesiredigitalextracellularin vivoinstrumentinterestnanoscalenervous system disorderneurosurgerynext generationprogramssensorsizetransmission process
项目摘要
DESCRIPTION (provided by applicant): As the need to record directly from the brain in humans and animals has grown over the last two decades, especially in candidate patients requiring resective epilepsy surgery, so too has the need for real-time, multi- modal analysis within an implantable package. ITN Energy Systems, in collaboration with Yale University Epilepsy Program, and Ad-Tech Medical Instruments Corporation, electrode manufacturer and end-user, will bring their unique expertise in biocompatible materials and sensors, nanoscale electronics, neurosurgery, neuroscience, and manufacturing, marketing and commercialization of brain implantable electrodes to developing a next generation, implantable sensor system. The goal of this Phase I project will be to develop a multimodal depth electrode to allow us to more fully map the seizure onset area in patients. The multimodal electrode will be an enhancement of the existing Spencer depth electrode to allow recording of icEEG, pH and potassium ([K+]). Each sensor, as part of a large, addressable (multiplexed) array, will utilize a field effect transistor (FET) to transduce the electrical signal (induced surface charge) from the biological parameter of interest (i.e., ions such as hydrogen (pH) or potassium, and icEEG) into a direct and `label-free' electrical readout without the use of bound dyes or fluorescent optical probes. The sensors for these modalities will be co-localized and will all interface with conventional data collection equipment. The device will initially be tested in rats to ensure that the system is feasible for human use. A comparison of the measured pH and K+ will be made between the multimodal electrode and conventional measurements in acute and chronic in vivo studies. These rat studies will be critical in determining the refinements needed to be addressed as part of a Phase II trial aimed at using this technology in patients. Anticipated Phase 2 efforts will move the device towards use in patients as well as replace the current electrodes with completely wireless devices which can continuously and synchronously sample the specified modalities in real-time with a battery-free solution, and wirelessly transmit the measures directly to a single computer port in digital format without any intervening hardware. PUBLIC HELATH RELEVANCE: This project proposes the design and testing of a modified depth electrode to directly measure electrical activity, potassium, and pH from the brain. Such a depth electrode may expand the use of conventional depth electrodes in the localization of the seizure onset region in medically intractable epilepsy patients requiring surgery, the monitoring of brain trauma, and the understanding of other neurological disorders. The proposed battery-free semiconductor electronics based solution will facilitate integration into conventional data collection equipment to create a low cost, biocompatible diagnostic system that can be actuated and interrogated from outside the brain.
描述(由申请人提供):在过去的二十年中,需要直接从人类和动物中记录大脑的需求,尤其是在需要恢复癫痫手术的候选患者中,因此在植入式软件包中需要实时多态分析。 ITN Energy Systems, in collaboration with Yale University Epilepsy Program, and Ad-Tech Medical Instruments Corporation, electrode manufacturer and end-user, will bring their unique expertise in biocompatible materials and sensors, nanoscale electronics, neurosurgery, neuroscience, and manufacturing, marketing and commercialization of brain implantable electrodes to developing a next generation, implantable sensor system.该阶段I项目的目标是开发多模式深度电极,以使我们能够更完整地绘制患者的癫痫发作区域。多模式电极将增强现有的Spencer深度电极,以记录ICEEG,pH和钾([K+])。每个传感器作为一个大型,可寻址(多重)阵列的一部分,将利用场效应晶体管(FET)从感兴趣的生物学参数(即,氢(pH)或钾或冰块等离子)转导电信(即诱导的表面电荷)转导直接和“无电气读取物或iCeeg”电气读取的离子。这些模式的传感器将被共定位,并将与常规数据收集设备进行交互。该设备最初将在大鼠中进行测试,以确保系统可用于人类使用。在急性和慢性体内研究中的多模式电极和常规测量之间进行测量的pH和K+进行比较。这些大鼠研究对于确定旨在在患者中使用该技术的II期试验的一部分所需的改进至关重要。预期的第2阶段的工作将使该设备在患者中使用,并用完全无线设备替换当前的电极,这些设备可以通过无电池解决方案实时连续和同步对指定的模式进行采样,并以数字格式无线传输措施,而无需任何间隔硬件。公共Helath相关性:该项目提出了修改深度电极的设计和测试,以直接测量大脑的电活动,钾和pH值。这种深度电极可能会扩大传统深度电极在需要手术的医学性顽固性癫痫患者中的癫痫发作区域的定位中的使用,监测脑创伤以及对其他神经系统疾病的理解。提出的基于无电池的基于半导体电子的解决方案将有助于整合到常规数据收集设备中,以创建低成本,生物相容性的诊断系统,该系统可以从大脑外部进行驱动和讯问。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bruce Lanning其他文献
Bruce Lanning的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bruce Lanning', 18)}}的其他基金
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Design and testing of a novel circumesophageal cuff for chronic bilateral subdiaphragmatic vagal nerve stimulation (sVNS)
用于慢性双侧膈下迷走神经刺激(sVNS)的新型环食管套囊的设计和测试
- 批准号:
10702126 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Optimizing HEALing in Ohio Communities (OHiO)-Health Equity Supplement
优化俄亥俄州社区 (OHiO) 的治疗 - 健康公平补充
- 批准号:
10890393 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Integrating Tailored Postoperative Opioid Tapering and Pain Management Support for Patients on Long-Term Opioid Use Presenting for Spine Surgery (MIRHIQL)
为脊柱手术中长期使用阿片类药物的患者整合定制的术后阿片类药物逐渐减量和疼痛管理支持 (MIRHIQL)
- 批准号:
10722943 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Enhancing Hypnotic Medication Discontinuation in Primary Care through Supervised Medication Tapering and Digital Cognitive Behavioral Insomnia Therapy
通过监督药物逐渐减量和数字认知行为失眠治疗,加强初级保健中催眠药物的停药
- 批准号:
10736443 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Feasibility of a care team-focused action plan to improve quality of care for children and adolescents with inflammatory bowel disease
以护理团队为重点的行动计划的可行性,以提高炎症性肠病儿童和青少年的护理质量
- 批准号:
10724900 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别: