A machine learning based fetal monitoring system to predict and prevent fetal hypoxia.

基于机器学习的胎儿监测系统,用于预测和预防胎儿缺氧。

基本信息

  • 批准号:
    10760437
  • 负责人:
  • 金额:
    $ 26.13万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-05 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

Project Summary/Abstract: Although EFM is widely deployed in the United States for most deliveries, it has failed to reduce rates for hypoxic injuries such as neonatal encephalopathy, despite an increased rate of cesarean sections. This lack of improvement has been attributed to inconsistent applications of vague guidelines during manual analysis of EFM tracings. Existing automated tools available in the market to augment physician capabilities take the form of low-precision simplistic rule-based alerts, which cause alarm fatigue and also fail to deliver improvements. This project proposes the creation and validation of a machine learning model for prediction of intrapartum fetal hypoxia with high sensitivity and specificity to address this need. Using a multi-site dataset of 50,000 tracings coupled with electronic health records, a combination of clinical knowledge and a variety of machine learning techniques will be used to create a model with leading performance. To clear the high bar set by FDA for patient safety with a de novo device, this proposal aims to validate this model by demonstrating high sensitivity and specificity on a held-out portion of this large multi-site data set, along with a user study to demonstrate improved performance by clinicians with software assistance. After this project demonstrates the safety and efficacy of this model for patient care, a future Phase II will beta test a software solution integrating this model in labor and delivery wards. The research plan outlined in this proposal will give obstetricians a valuable evidence-based tool to help them interpret EFM tracings.
项目摘要/摘要: 尽管EFM大多数交付都广泛部署在美国,但它未能降低利率 尽管剖宫产发生率增加了,如新生儿脑病等低氧损伤。这种缺乏 改进归因于在手动分析过程中,模糊指南的应用不一致 EFM示踪。市场上可用的现有自动化工具以增强医师的功能为表格 低精度基于规则的警报,这会导致警报疲劳,也无法提供改进。 该项目提出了用于预测胎儿的机器学习模型的创建和验证 缺氧具有高灵敏度和特异性以满足这一需求。使用50,000个跟踪的多站点数据集 再加上电子健康记录,临床知识和各种机器学习的结合 技术将用于创建具有领先性能的模型。清除FDA设置的高标准 该提案旨在通过证明高灵敏度来验证该模型的患者安全性 以及此大型多站点数据集的持有部分的特异性以及用户研究以证明 通过软件帮助提高了临床医生的性能。在这个项目展示了安全性和 该模型在患者护理中的功效,未来的II期将测试一个整合该模型的软件解决方案 在劳动和分娩病房中。该提案中概述的研究计划将使产科医生有价值 循证工具可帮助他们解释EFM跟踪。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bonnie Lesley Zell其他文献

Bonnie Lesley Zell的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

A Novel VpreB1 Anti-body Drug Conjugate for the Treatment of B-Lineage Acute Lymphoblastic Leukemia/Lymphoma
一种用于治疗 B 系急性淋巴细胞白血病/淋巴瘤的新型 VpreB1 抗体药物偶联物
  • 批准号:
    10651082
  • 财政年份:
    2023
  • 资助金额:
    $ 26.13万
  • 项目类别:
Traumatic Brain Injury Anti-Seizure Prophylaxis in the Medicare Program
医疗保险计划中的创伤性脑损伤抗癫痫预防
  • 批准号:
    10715238
  • 财政年份:
    2023
  • 资助金额:
    $ 26.13万
  • 项目类别:
Responsive Neurostimulation for Treatment Resistant Depression
反应性神经刺激治疗难治性抑郁症
  • 批准号:
    10513243
  • 财政年份:
    2023
  • 资助金额:
    $ 26.13万
  • 项目类别:
Development of a regional anesthesia guidance system to increase patient access to opioid-sparing analgesia for hip fracture pain
开发区域麻醉引导系统,以增加患者获得髋部骨折疼痛的阿片类药物保留镇痛的机会
  • 批准号:
    10759550
  • 财政年份:
    2023
  • 资助金额:
    $ 26.13万
  • 项目类别:
A mechanistic understanding of treatment-related outcomes of sleep disordered breathing using functional near infrared spectroscopy
使用功能性近红外光谱从机制上理解睡眠呼吸障碍的治疗相关结果
  • 批准号:
    10565985
  • 财政年份:
    2023
  • 资助金额:
    $ 26.13万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了