Hydrogels to Study Synergistic Effects of Signaling Factors and Matrix Mechanics on Valve Disease Progression
水凝胶研究信号因子和基质力学对瓣膜疾病进展的协同作用
基本信息
- 批准号:9397567
- 负责人:
- 金额:$ 36.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-12-15 至 2020-11-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAftercareAortic Valve StenosisAttentionBackBiochemicalCell Culture TechniquesCellsCuesCytokine SignalingDiseaseDisease ProgressionEncapsulatedEpigenetic ProcessExcisionExperimental DesignsExposure toFibroblastsFibrosisGelGoalsGrowth FactorHeart Valve DiseasesHeart ValvesHistologicHomeostasisHydrogelsIL6 geneIn SituIn VitroInflammationInflammatoryInterleukin-1 betaKnowledgeLightMechanicsMediatingMedicineMethodsMolecularMolecular TargetMorphologyMyofibroblastOperative Surgical ProceduresOrganPI3K/AKTPathogenicityPathologic ProcessesPathway AnalysisPathway interactionsPhenotypePhosphorylationPlayPopulationProcessRoleSignal PathwaySignal TransductionSignaling ProteinStenosisStimulusSystemTNF geneTestingTherapeuticTimeTissuesTransforming Growth Factor betaWorkWound Healingaortic valveaortic valve replacementclinically relevantcombinatorialculture platescytokineefficacy testingethylene glycolinhibitor/antagonistinnovationinsightinterestinterstitial cellmechanical propertiesmechanotransductionmolecular drug targetmolecular targeted therapiesmouse modelreceptorsmall molecule inhibitorstemtargeted treatmenttranscriptometranscriptome sequencingvalvular stenosis
项目摘要
Myofibroblast activation of Valvular Interstitial Cells (VICs) is considered to be a primary driver of
valvular fibrosis and stenosis. For this reason, the external cues that act to control the
myofibroblast phenotype of VICs have been topics of considerable attention in the field.
Increasing evidence suggests that beyond receptor-mediated activation of VICs by soluble growth
factors, physical cues from the matrix play a critical role in this process. Unfortunately, traditional
methods used to culture VICs inherently leads to their myofibroblast activation, such that it
becomes difficult to determine the effects of environmental stiffness on activation and especially
de-activation. To address this issue, our group has demonstrated that unique hydrogel materials
can be used to create soft, non-activating substrates for VIC culture that allow VICs to maintain a
phenotype that more closely resembles that of freshly isolated cells. Now, we aim to examine how
matrix stiffness in combination with pro-inflammatory cytokines influence the VIC fibroblast-to-
myofibroblast transition, the epigenetic changes that may occur to these cells over time, and the
pathways in matrix signaling that might be useful in reversing the pathogenic myofibroblast
phenotype. Specifically, we propose to: 1) Use a combinatorial approach to study the effect of
pro-inflammatory cytokines on VIC phenotypes as a function of microenvironmental stiffness 2)
Identify the effects of mechanical and inflammatory cues on the fibroblast-to-myofibroblast
transition and its reversal using hydrogels with dynamically tunable mechanical properties, and 3)
Discover new molecular targets for therapeutics to temper pathogenic VIC myofibroblast
activation under inflammatory conditions. Together, work completed within each of these Aims
will provide unique insight into the progression of fibrotic aortic valvular stenosis. The creation of
tunable cell culture platforms will allow us to answer questions about differences between
reversible (transient, wound healing state) and irreversible (persistent, pathogenic state) VIC
myofibroblasts that cannot be adequately addressed with traditional methods. Subsequent
analysis of the signaling pathways and genes will be used to identify new targets with therapeutic
potential to reverse VIC activation and treat valve disease. Moreover, successful completion of
these Aims should be of general interest to the field of medicine, as mechanisms of fibrosis are
likely shared among most fibrosis-related diseases.
瓣膜间质细胞 (VIC) 的肌成纤维细胞激活被认为是
瓣膜纤维化和狭窄。出于这个原因,控制行为的外部线索
VIC 的肌成纤维细胞表型一直是该领域备受关注的话题。
越来越多的证据表明,除了受体介导的可溶性生长激活 VIC 之外,
因素,来自矩阵的物理线索在此过程中发挥着关键作用。不幸的是,传统
用于培养 VIC 的方法本质上会导致其肌成纤维细胞激活,因此
很难确定环境刚度对激活的影响,尤其是
停用。为了解决这个问题,我们的团队证明了独特的水凝胶材料
可用于创建用于 VIC 培养的柔软、非活化基质,使 VIC 能够保持
表型更接近于新鲜分离的细胞。现在,我们的目标是研究如何
基质硬度与促炎细胞因子相结合影响 VIC 成纤维细胞
肌成纤维细胞转变,这些细胞随着时间的推移可能发生的表观遗传变化,以及
基质信号通路可能有助于逆转致病性肌成纤维细胞
表型。具体来说,我们建议:1)使用组合方法来研究
促炎细胞因子对 VIC 表型的影响作为微环境硬度的函数 2)
确定机械和炎症信号对成纤维细胞到肌成纤维细胞的影响
使用具有动态可调机械性能的水凝胶进行转变及其逆转,以及3)
发现治疗致病性 VIC 肌成纤维细胞的新分子靶点
炎症条件下的激活。共同完成这些目标中的工作
将为纤维化主动脉瓣狭窄的进展提供独特的见解。的创建
可调谐细胞培养平台将使我们能够回答有关之间差异的问题
可逆(短暂、伤口愈合状态)和不可逆(持续、致病状态)VIC
传统方法无法充分解决肌成纤维细胞问题。随后的
对信号通路和基因的分析将用于识别治疗的新靶点
逆转 VIC 激活和治疗瓣膜疾病的潜力。此外,还顺利完成了
这些目标应该引起医学领域的普遍兴趣,因为纤维化的机制是
可能是大多数纤维化相关疾病共有的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KRISTI S. ANSETH其他文献
KRISTI S. ANSETH的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KRISTI S. ANSETH', 18)}}的其他基金
Photoresponsive materials to study matricellular signaling dynamics during crypt formation and fission
用于研究隐窝形成和裂变过程中基质细胞信号动力学的光响应材料
- 批准号:
10737202 - 财政年份:2019
- 资助金额:
$ 36.28万 - 项目类别:
Synthetic hydrogels to study formation and maintenance of intestinal crypts
用于研究肠隐窝的形成和维持的合成水凝胶
- 批准号:
10418728 - 财政年份:2019
- 资助金额:
$ 36.28万 - 项目类别:
Clickable Microgel Scaffolds for MSC Expansion and Delivery
用于 MSC 扩展和交付的可点击微凝胶支架
- 批准号:
10356090 - 财政年份:2019
- 资助金额:
$ 36.28万 - 项目类别:
Synthetic hydrogels to study formation and maintenance of intestinal crypts
用于研究肠隐窝的形成和维持的合成水凝胶
- 批准号:
9981736 - 财政年份:2019
- 资助金额:
$ 36.28万 - 项目类别:
Synthetic hydrogels to study formation and maintenance of intestinal crypts
用于研究肠隐窝的形成和维持的合成水凝胶
- 批准号:
10164770 - 财政年份:2019
- 资助金额:
$ 36.28万 - 项目类别:
Clickable Microgel Scaffolds for MSC Expansion and Delivery
用于 MSC 扩展和交付的可点击微凝胶支架
- 批准号:
10584600 - 财政年份:2019
- 资助金额:
$ 36.28万 - 项目类别:
Clickable Microgel Scaffolds for MSC Expansion and Delivery
用于 MSC 扩展和交付的可点击微凝胶支架
- 批准号:
9884753 - 财政年份:2019
- 资助金额:
$ 36.28万 - 项目类别:
Hydrogels to Study Synergistic Effects of Signaling Factors and Matrix Mechanics on Valve Disease Progression
水凝胶研究信号因子和基质力学对瓣膜疾病进展的协同作用
- 批准号:
9247569 - 财政年份:2016
- 资助金额:
$ 36.28万 - 项目类别:
相似海外基金
Palliative Care for High-Risk TAVR Patients: The Impact of Multimorbidity
高危 TAVR 患者的姑息治疗:多发病的影响
- 批准号:
9922190 - 财政年份:2018
- 资助金额:
$ 36.28万 - 项目类别:
Palliative Care for High-Risk TAVR Patients: The Impact of Multimorbidity
高危 TAVR 患者的姑息治疗:多发病的影响
- 批准号:
10393555 - 财政年份:2018
- 资助金额:
$ 36.28万 - 项目类别:
Palliative Care for High-Risk TAVR Patients: The Impact of Multimorbidity
高危 TAVR 患者的姑息治疗:多发病的影响
- 批准号:
9762764 - 财政年份:2018
- 资助金额:
$ 36.28万 - 项目类别:
Hydrogels to Study Synergistic Effects of Signaling Factors and Matrix Mechanics on Valve Disease Progression
水凝胶研究信号因子和基质力学对瓣膜疾病进展的协同作用
- 批准号:
9247569 - 财政年份:2016
- 资助金额:
$ 36.28万 - 项目类别:
Optimal Decision Making in Aortic Valve Replacement
主动脉瓣置换术的最佳决策
- 批准号:
8635238 - 财政年份:2014
- 资助金额:
$ 36.28万 - 项目类别: