Multiscale Model of the Vagal Outflow to the Heart
迷走神经流出心脏的多尺度模型
基本信息
- 批准号:9152617
- 负责人:
- 金额:$ 57.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-04-10 至 2022-03-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdultAffectAnatomyArrhythmiaAutomobile DrivingBehaviorBiological AssayBiological Neural NetworksBrain StemCardiacCardiac OutputCardiac healthCerealsClinical DataColorComputer SimulationCoronary arteryDataDiseaseEarly DiagnosisElectrophysiology (science)Experimental ModelsFemaleFunctional disorderFuzzy LogicGangliaGenerationsGenesGenetic TranscriptionGoalsHealthHeartHeart DiseasesHeart RateHeart failureIndividualIschemiaKnowledgeLabelLeft ventricular structureLigationLinkMaintenanceMeasuresModalityModelingMolecularMyocardial IschemiaNeuronal PlasticityNeuronsNitric OxidePalliative CarePathogenesisPathologyPhenotypePhysiologicalPreventionRattusRegulator GenesRosaSinoatrial NodeSourceStudy modelsSudden DeathSystemTestingTropismVagus nerve structureVentricularViral Vectoranatomical tracingbasechronotropicdorsal motor nucleusexperimental studyheart functionhemodynamicsimprovedinsightinterestlaser capture microdissectionmalemodel developmentmulti-scale modelingmultimodalitynetwork modelsneuronal excitabilitynovelnovel therapeuticsnucleus ambiguusprotective effectresponsetranscriptomics
项目摘要
PROJECT SUMMARY
Vagal control of the heart has seen renewed interest due to the now well-recognized potential of manipulating
cardiac vagal activity for novel therapeutic opportunities in treating heart disease. Recent anatomical and
physiological evidence shows that vagal cardiac control is multimodal at both pre- and post-ganglionic
neuronal levels. Coordination between multiple modes of control (e.g., of heart rate, ventricular contractility,
etc) is essential for heart health. Disruption of such coordination is a hallmark of heart failure and arrhythmias,
for example. Studies thus far have largely focused on the physiological effects of the vagus on heart rate
without delving into the underlying neural networks, where insights are likely to yield targets for fine-grained
manipulation of vagal activity to treat heart disease. Our project is aimed at addressing this unmet need by
focusing on the central neuronal as well as cardiac ganglionic circuits driving chrono-, dromo- and iono-
tropism. We will pursue an integrated multiscale modeling strategy that combines fine-grained anatomical
tracing of control circuits and high-throughput transcriptional analysis of single neurons identified based on
circuit connectivity, with computational modeling of the multiscale closed loop vagal cardiac control. These
involve hemodynamics, brainstem neuronal networks, and cardiac ganglionic circuits involved in the
coordinated inotropic and chronotropic control of the heart. We will develop detailed electrophysiological
models of neuronal excitability in nucleus ambiguus (NA) and dorsal motor nucleus (DMV), as well as the
targeted cardiac ganglia, and incorporate the transcriptional changes identified from coronary artery ligation
experiments in these models. We hypothesize that coordination and integration of the control of rate and
contractility occurring at the level of the NA/DMV and the level of the cardiac ganglia are the basis for
cardioprotective vagal cardiac outflows. We will test this hypothesis in three Aims: (1) Develop a multiscale
network model framework integrating the key modules controlling SA node and left ventricle. (2) Determine the
molecular mechanisms affecting the coordination involved in cardiac functional control in heart disease by
linking gene regulatory networks and neural network behavior. (3) Test model predictions in selective
manipulation of function experiments. Our multiscale computational modeling framework will enable us to
combine and interpret the anatomical, transcriptional, and physiological results from experiments. Our
investigative team has previously collaborated in modeling the baroreflexes and comprises complementary
expertise in all aspects of the proposal. Our approach is expected to identify the relative contribution of
brainstem circuits and cardiac ganglionic circuits to the coordination of multimodal vagal control. Our expected
results, by uncovering the molecular and physiological mechanisms underlying the source and maintenance of
coordinated vagal outflows, have significant implications for identifying targets for early diagnosis, prevention,
and even novel palliative therapy in treating heart disease.
项目概要
由于现在公认的操纵心脏的潜力,迷走神经对心脏的控制重新引起了人们的兴趣
心脏迷走神经活动为治疗心脏病提供了新的治疗机会。最近的解剖学和
生理学证据表明,迷走神经心脏控制在节前和节后都是多模式的
神经元水平。多种控制模式之间的协调(例如心率、心室收缩力、
等)对于心脏健康至关重要。这种协调性的破坏是心力衰竭和心律失常的标志,
例如。迄今为止的研究主要集中在迷走神经对心率的生理影响
无需深入研究底层神经网络,其中的见解可能会产生细粒度的目标
操纵迷走神经活动来治疗心脏病。我们的项目旨在解决这一未满足的需求
专注于驱动计时、驱动和离子的中枢神经元和心脏神经节回路
向性。我们将追求一种集成的多尺度建模策略,结合细粒度的解剖学
基于控制电路的追踪和基于识别的单个神经元的高通量转录分析
电路连接,以及多尺度闭环迷走神经心脏控制的计算建模。这些
涉及血流动力学、脑干神经元网络和心脏神经节回路
心脏的正性肌力和变时性协调控制。我们将制定详细的电生理学
疑核(NA)和背运动核(DMV)神经元兴奋性模型,以及
靶向心脏神经节,并纳入从冠状动脉结扎中识别出的转录变化
在这些模型中进行实验。我们假设速率和速率控制的协调和整合
发生在 NA/DMV 水平和心脏神经节水平的收缩力是
心脏保护性迷走神经心脏流出。我们将在三个目标中检验这一假设:(1)开发多尺度模型
网络模型框架集成了控制SA节点和左心室的关键模块。 (2) 确定
影响心脏病心脏功能控制协调的分子机制
将基因调控网络和神经网络行为联系起来。 (3) 选择性地测试模型预测
操作功能实验。我们的多尺度计算建模框架将使我们能够
结合并解释实验的解剖、转录和生理结果。我们的
研究小组之前曾合作对压力反射进行建模,并包括互补的
提案各方面的专业知识。我们的方法预计将确定以下方面的相对贡献:
脑干回路和心脏神经节回路协调多模态迷走神经控制。我们的预期
结果,通过揭示其来源和维持的分子和生理机制
协调迷走神经流出,对于确定早期诊断、预防、
甚至治疗心脏病的新型姑息疗法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JAMES SCHWABER其他文献
JAMES SCHWABER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JAMES SCHWABER', 18)}}的其他基金
Molecular Neurogenetics of the Brainstem Neuronal Source of Cardioprotective Vagal Outflow
心脏保护性迷走神经流出脑干神经源的分子神经遗传学
- 批准号:
10641909 - 财政年份:2022
- 资助金额:
$ 57.96万 - 项目类别:
Molecular Neurogenetics of the Brainstem Neuronal Source of Cardioprotective Vagal Outflow
心脏保护性迷走神经流出脑干神经源的分子神经遗传学
- 批准号:
10522387 - 财政年份:2022
- 资助金额:
$ 57.96万 - 项目类别:
Multiscale Model of the Vagal Outflow to the Heart
迷走神经流出心脏的多尺度模型
- 批准号:
9908155 - 财政年份:2017
- 资助金额:
$ 57.96万 - 项目类别:
Neuroimmune Cell Networks in Opioid Dependence and Withdrawal
阿片类药物依赖和戒断中的神经免疫细胞网络
- 批准号:
8676771 - 财政年份:2013
- 资助金额:
$ 57.96万 - 项目类别:
Neuroimmune Cell Networks in Opioid Dependence and Withdrawal
阿片类药物依赖和戒断中的神经免疫细胞网络
- 批准号:
8600490 - 财政年份:2013
- 资助金额:
$ 57.96万 - 项目类别:
Modeling Central Autonomic Regulatory Network Adaptation to Hypertension
中央自主调节网络对高血压的适应建模
- 批准号:
8502346 - 财政年份:2012
- 资助金额:
$ 57.96万 - 项目类别:
Modeling Central Autonomic Regulatory Network Adaptation to Hypertension
中央自主调节网络对高血压的适应建模
- 批准号:
8843930 - 财政年份:2012
- 资助金额:
$ 57.96万 - 项目类别:
Modeling Central Autonomic Regulatory Network Adaptation to Hypertension
中央自主调节网络对高血压的适应建模
- 批准号:
8372524 - 财政年份:2012
- 资助金额:
$ 57.96万 - 项目类别:
Modeling Central Autonomic Regulatory Network Adaptation to Hypertension
中央自主调节网络对高血压的适应建模
- 批准号:
8657102 - 财政年份:2012
- 资助金额:
$ 57.96万 - 项目类别:
Integrated Modeling of Adaptive Neuronal Regulation
自适应神经元调节的集成建模
- 批准号:
8248271 - 财政年份:2009
- 资助金额:
$ 57.96万 - 项目类别:
相似国自然基金
成人免疫性血小板减少症(ITP)中血小板因子4(PF4)通过调节CD4+T淋巴细胞糖酵解水平影响Th17/Treg平衡的病理机制研究
- 批准号:82370133
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
依恋相关情景模拟对成人依恋安全感的影响及机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
生活方式及遗传背景对成人不同生命阶段寿命及死亡的影响及机制的队列研究
- 批准号:
- 批准年份:2021
- 资助金额:56 万元
- 项目类别:面上项目
成人与儿童结核病发展的综合研究:细菌菌株和周围微生物组的影响
- 批准号:81961138012
- 批准年份:2019
- 资助金额:100 万元
- 项目类别:国际(地区)合作与交流项目
统计学习影响成人汉语二语学习的认知神经机制
- 批准号:31900778
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Uncovering Mechanisms of Racial Inequalities in ADRD: Psychosocial Risk and Resilience Factors for White Matter Integrity
揭示 ADRD 中种族不平等的机制:心理社会风险和白质完整性的弹性因素
- 批准号:
10676358 - 财政年份:2024
- 资助金额:
$ 57.96万 - 项目类别:
A HUMAN IPSC-BASED ORGANOID PLATFORM FOR STUDYING MATERNAL HYPERGLYCEMIA-INDUCED CONGENITAL HEART DEFECTS
基于人体 IPSC 的类器官平台,用于研究母亲高血糖引起的先天性心脏缺陷
- 批准号:
10752276 - 财政年份:2024
- 资助金额:
$ 57.96万 - 项目类别:
Climate Change Effects on Pregnancy via a Traditional Food
气候变化通过传统食物对怀孕的影响
- 批准号:
10822202 - 财政年份:2024
- 资助金额:
$ 57.96万 - 项目类别:
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
$ 57.96万 - 项目类别: