Circumventing Antibiotic Resistance with Novel Gene-Silencing Therapeutics
用新型基因沉默疗法规避抗生素耐药性
基本信息
- 批准号:9242603
- 负责人:
- 金额:$ 44.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-03-15 至 2019-02-28
- 项目状态:已结题
- 来源:
- 关键词:AcinetobacterAcinetobacter baumanniiAmericasAmpicillinAnimal ModelAnimalsAnti-Bacterial AgentsAntibiotic ResistanceAntibioticsAntisense TechnologyBacteremiaBacteriaBacterial GenesBindingBiological AssayBurkholderia cepacia complexCell physiologyClinicalClinical ResearchCommunicable DiseasesConserved SequenceDatabasesDevelopmentEscherichia coliEssential GenesFutureGene SilencingGene TargetingGenesGoalsGram-Negative BacteriaGrowthHumanIn VitroInfectionInflammationKlebsiellaKlebsiella pneumonia bacteriumLeadLungMedicalMethodologyMicrobial BiofilmsMorbidity - disease rateMulti-Drug ResistanceOrganismOutcomePathway interactionsPeptidesPharmaceutical PreparationsPhasePredispositionPropertyPseudomonasPseudomonas aeruginosaPublishingRNAResistanceResistance developmentRibosomal RNASalmonella typhimuriumSocietiesTechnologyTestingTherapeuticTherapeutic UsesTranslationsVirulenceantimicrobialbacterial resistancebactericidebasedesignefficacy studyefficacy testingfightingimprovedin vivokillingsmortalitymouse modelmulti-drug resistant pathogennovelnovel strategiespathogenphosphorodiamidate morpholino oligomerpre-clinicalpressurepublic health relevanceresistance generesistance mechanismscreeningsynthetic constructtherapeutic developmenttherapeutic target
项目摘要
DESCRIPTION (provided by applicant): The need for new antimicrobials is increasingly urgent. The rate of multidrug resistant pathogens continues to increase, leading to significant morbidity and mortality throughout the world. Furthermore, the current pipeline for new antimicrobials remains very narrow. The Infectious Diseases Society of America has identified in their "Bad Bugs, No Drugs" campaign, a group of pathogens that have become increasingly resistant to current antibiotics. This group includes the Gram-negative pathogens Acinetobacter baumannii, Pseudomonas aeruginosa and Klebsiella pneumoniae. A new paradigm in antibiotic discovery and design has recently been shown effective against numerous bacteria. This new approach is based on a platform technology called peptide-phosphorodiamidate mopholino oligomers (PPMOs). PPMOs are synthetic DNA mimics that bind to RNA in a sequence-specific, antisense manner and inhibit expression of target bacterial genes. PPMOs have already been used successfully to kill a variety of bacterial pathogens including the Gram-negative bacteria Escherichia coli, Salmonella typhimurium, Burkholderia cepacia complex and Acinetobacter baumannii. PPMOS are bactericidal in culture, and reduce bacteremia and improve survival in animal models of infection. PPMOs are more potent than many traditional antibiotics such as ampicillin. The goal of this project is to develop PPMOs for therapeutic use against the multidrug resistant pathogens Acinetobacter baumannii, Pseudomonas aeruginosa and Klebsiella pneumoniae. The specific aims are to design, produce and screen PPMOS against various gene targets in these multidrug-resistant pathogens. The experimental approach will be to target virulence properties in Acinetobacter and Pseudomonas, and essential or antibiotic resistance genes in Klebsiella. Lead compounds that are effective during our screening phase will then be tested for efficacy in animal models of infection. This technology provides a methodological advantage because many PPMOs can be rapidly synthesized and simultaneously tested against numerous targets. This allows for the possibility of targeting multiple genes in a single organism or the development of cocktails of PPMOs that target multiple pathogens. This project will identify lead target PPMOs in these medically important Gram- negative pathogens that can be moved forward to pre-clinical and clinical studies.
描述(由申请人提供):对新型抗菌药物的需求日益迫切。多重耐药病原体的比率持续增加,导致全世界的发病率和死亡率显着增加。此外,目前新抗菌药物的研发管线仍然非常狭窄。美国传染病学会在其“坏虫,无药”运动中发现了一组对当前抗生素的耐药性越来越强的病原体。该组包括革兰氏阴性病原体鲍曼不动杆菌、铜绿假单胞菌和肺炎克雷伯菌。最近,抗生素发现和设计的新范例已被证明对多种细菌有效。这种新方法基于一种称为肽-磷酸二酰胺吗啉低聚物 (PPMO) 的平台技术。 PPMO 是合成的 DNA 模拟物,以序列特异性、反义方式与 RNA 结合并抑制目标细菌基因的表达。 PPMO 已成功用于杀死多种细菌病原体,包括革兰氏阴性菌、大肠杆菌、鼠伤寒沙门氏菌、洋葱伯克霍尔德菌复合体和鲍曼不动杆菌。 PPMOS 在培养物中具有杀菌作用,可减少感染动物模型中的菌血症并提高存活率。 PPMO 比许多传统抗生素(如氨苄西林)更有效。该项目的目标是开发用于治疗多重耐药病原体鲍曼不动杆菌、铜绿假单胞菌和肺炎克雷伯菌的 PPMO。具体目标是针对这些多重耐药病原体中的各种基因靶标设计、生产和筛选 PPMOS。实验方法将针对不动杆菌和假单胞菌的毒力特性,以及克雷伯氏菌的必需基因或抗生素抗性基因。在我们的筛选阶段有效的先导化合物将在动物感染模型中进行功效测试。该技术具有方法学优势,因为可以快速合成许多 PPMO,并同时针对众多目标进行测试。这使得有可能针对单个生物体中的多个基因或开发针对多种病原体的 PPMO 混合物。该项目将确定这些医学上重要的革兰氏阴性病原体中的主要靶标 PPMO,并可将其推进临床前和临床研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
BRUCE L GELLER其他文献
BRUCE L GELLER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('BRUCE L GELLER', 18)}}的其他基金
Circumventing Antibiotic Resistance with Novel Gene-Silencing Therapeutics
用新型基因沉默疗法规避抗生素耐药性
- 批准号:
9223787 - 财政年份:2016
- 资助金额:
$ 44.35万 - 项目类别:
Circumventing Antibiotic Resistance with Novel Gene-Silencing Therapeutics
用新型基因沉默疗法规避抗生素耐药性
- 批准号:
8703897 - 财政年份:2014
- 资助金额:
$ 44.35万 - 项目类别:
Circumventing Antibiotic Resistance with Novel Gene-Silencing Therapeutics
用新型基因沉默疗法规避抗生素耐药性
- 批准号:
8703897 - 财政年份:2014
- 资助金额:
$ 44.35万 - 项目类别:
相似国自然基金
基因ytnP克隆表达及其对鲍曼不动杆菌的群体淬灭作用及机制研究
- 批准号:82360003
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
抗碳青霉烯耐药鲍曼不动杆菌新型BfmR抑制剂的发现与活性研究
- 批准号:82304377
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
抗CRISPR蛋白抑制CRISPR-Cas系统介导鲍曼不动杆菌耐药和毒力演化机制研究
- 批准号:82373637
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
鲍曼不动杆菌ATCC 17961 O-抗原、荚膜多糖 K15和K35 抗原的合成及生物活性研究
- 批准号:22377043
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
邻氨基苯甲酸群体感应系统调控鲍曼不动杆菌耐药和毒力的分子机制
- 批准号:32300033
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Genomics-Assisted Antibiotic Discovery from Unprecedented Microbes of the Great Salt Lake
基因组学辅助从大盐湖前所未有的微生物中发现抗生素
- 批准号:
10448339 - 财政年份:2021
- 资助金额:
$ 44.35万 - 项目类别:
Genomics-Assisted Antibiotic Discovery from Unprecedented Microbes of the Great Salt Lake
基因组学辅助从大盐湖前所未有的微生物中发现抗生素
- 批准号:
10298732 - 财政年份:2021
- 资助金额:
$ 44.35万 - 项目类别:
Genomics-Assisted Antibiotic Discovery from Unprecedented Microbes of the Great Salt Lake
基因组学辅助从大盐湖前所未有的微生物中发现抗生素
- 批准号:
10298732 - 财政年份:2021
- 资助金额:
$ 44.35万 - 项目类别:
Pharmacology of intrathecal/intraventricular polymyxins: A systems-based approach
鞘内/脑室内多粘菌素的药理学:基于系统的方法
- 批准号:
10433991 - 财政年份:2019
- 资助金额:
$ 44.35万 - 项目类别:
Pharmacology of intrathecal/intraventricular polymyxins: A systems-based approach
鞘内/脑室内多粘菌素的药理学:基于系统的方法
- 批准号:
9974473 - 财政年份:2019
- 资助金额:
$ 44.35万 - 项目类别: