Mitochondrial Fission, Calcium, ROS in Right Ventricular Fibrosis

右心室纤维化中的线粒体裂变、钙、ROS

基本信息

  • 批准号:
    10734675
  • 负责人:
  • 金额:
    $ 38.75万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-07-01 至 2027-06-30
  • 项目状态:
    未结题

项目摘要

Project Summary: Growing evidence suggests the link between right ventricular (RV) fibrosis, poor function of the pressure-overloaded RV, and mortality in pulmonary arterial hypertension (PAH). PAH patients with decompensated RV failure (RVF) have persistent RV fibrosis even when treated with the conventional therapies for PAH. RVF is the main cause of death in PAH and maintaining RV function in PAH is associated with improved patient survival. However, there are currently no available therapies that specifically target RV fibrosis. Therefore, identifying the molecular mechanisms underlying RV fibrosis in PAH is urgently needed to develop novel therapeutic approaches targeting RVF in PAH. We recently reported the significant roles of o xidative stress-sensitive protein kinase D (PKD) at outer mitochondrial membrane (OMM) and its substrate dynamin-related protein 1 (DRP1), a mitochondrial fission protein, in dysregulating CM functions. We also showed that DRP1-mediated mitochondrial fission limits the size of the matrix cavity, thus causing elevated and sustained mitochondrial Ca2+ (mtCa2+) transient in response to cytosolic Ca2+ elevation. Using a preclinical rat PAH model with RV hypertrophy, failure, and fibrosis that significant , we found PKD activation and DRP1 phosphorylation occurs specifically in cardiac fibroblasts (CFs) in the RV (RV-CFs), but not in CMs under PAH, which subsequently causes an PKD-dependent increase in mitochondrial fission, mitochondrial reactive oxygen species (mROS), and CF proliferation. Moreover, we found that PKD activation is associated with increased phosphorylation of a pro-apoptotic protein Bax, which inhibits apoptotic pore formation in the OMM and potentially contributes to the anti-apoptotic phenotype of RV-CFs in PAH. Lastly, we also found that mtCa2+ uptake via mtCa2+ uniporter (MCU) is required for mROS elevation and subsequent activation of proliferative signaling in CFs. Based on these findings, we hypothesize that 1) PKD-dependent Bax phosphorylation allows RV-CFs to be resistant to apoptosis under PAH; 2) PKD-dependent mitochondrial fission limits mtCa2+ and antioxidant capacity by decreasing the size of the matrix cavity and causing increased mtCa2+ and mROS levels, thus acting as a molecular “switch” for proliferative signaling for RV-CFs in PAH; and 3) CF-specific inhibition of PKD at the OMM in vivo can be leveraged as a novel therapy to attenuate cardiac fibrosis in response to stress/injury such as PAH. In Aim 1, we will establish Bax as a novel PKD substrate in the mitochondria and assess the impact of PKD-dependent Bax phosphorylation on OMM permeability. To specifically inhibit PKD activity only at the OMM, we will use an OMM-targeted dominant-negative PKD1 (mt-PKD- DN) that we have newly validated. In Aim 2, we will test whether PKD-dependent enhancement of mitochondrial fission facilitates RV-CF proliferation via increased mtCa2+ and mROS levels. In Aim 3, we will test the therapeutic potential of mitochondrial PKD inhibition by mt-PKD-DN in the quiescent CFs before they transform into myofibroblasts by CF- specifically expressing mt-PKD-DN in a preclinical rat PAH model. The proposed project is designed to determine the role of mitochondrial fission, Ca2+, and mROS in RV-CF hyperproliferation and RV fibrosis in PAH, which will lead to develop a novel strategy (i.e., PKD inhibition) for the management of RV fibrosis and failure in the setting of PAH.
项目摘要: 越来越多的证据表明,右心(RV)纤维化之间的联系,压力越过的功能较差 RV和肺动脉高压(PAH)的死亡率。 PAH失效失败(RVF)的患者患有 即使使用PAH的常规疗法治疗,持续的RV纤维化也是如此。 RVF是死亡的主要原因 PAH和PAH中的RV功能与改善患者生存有关。但是,目前没有 专门针对RV纤维化的可用疗法。因此,确定RV的分子机制 迫切需要PAH中的纤维化来开发针对PAH的RVF的新型治疗方法。 我们最近报道了O的重要作用 Xidativative应激敏感蛋白激酶 d(pkd)在外部 线粒体膜(OMM)及其底物动力蛋白相关蛋白1(DRP1),一种线粒体裂变蛋白,在 CM功能失调。我们还表明DRP1介导的线粒体裂变限制了基质的大小 腔,从而导致升高和持续的线粒体Ca2+(MTCA2+)瞬时响应胞质Ca2+升高。 使用带有RV肥大,衰竭和纤维化的临床前大鼠PAH模型 ,我们发现 PKD激活 DRP1磷酸化特别发生 在RV(RV-CFS)中的心脏成纤维细胞(CFS)中,但在CMS下不在 PAH随后导致线粒体裂变,线粒体活性氧的PKD依赖性增加 物种(MRO)和CF增殖。此外,我们发现PKD激活与增加有关 促凋亡蛋白Bax的磷酸化,该蛋白质抑制了OMM中的凋亡孔形成,并可能抑制 有助于PAH中RV-CF的抗凋亡表型。最后,我们还发现MTCA2+通过MTCA2+吸收 MROS升高和随后在CFS中增殖信号传导激活所必需的。基于 这些发现,我们假设1)依赖PKD的Bax磷酸化允许RV-CFS对凋亡具有抵抗力 在PAH下; 2)通过降低大小 基质腔并引起MTCA2+和MROS水平的增加,因此充当分子“开关” PAH中RV-CF的信号传导; 3)可以将体内PKD的CF特异性抑制作为一种新颖 响应压力/损伤(例如PAH)的治疗,可减弱心脏纤维化。在AIM 1中,我们将建立Bax作为小说 线粒体中的PKD底物并评估PKD依赖性BAX磷酸化对OMM渗透性的影响。 为了特别抑制PKD活性,我们将使用符合OMM的主导性PKD1(MT-PKD-- DN)我们已获得新验证。在AIM 2中,我们将测试线粒体裂变的依赖PKD依赖性的增强 通过升高的MTCA2+和MROS水平促进RV-CF增殖。在AIM 3中,我们将测试 线粒体PKD通过MT-PKD-DN在静态CFS中抑制,然后通过CF-转化为肌纤维细胞 在临床前大鼠PAH模型中特别表达MT-PKD-DN。 拟议的项目旨在确定 PAH中线粒体裂变,Ca2+和MRO在RV-CF高增殖和RV纤维化中的作用,这将导致 制定一种新的策略(即PKD抑制),以管理PAH的RV纤维化和失败。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bong Sook Jhun其他文献

Bong Sook Jhun的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

基于巨噬细胞表型转变探讨BTSA1诱导衰老肌成纤维细胞凋亡及促肺纤维化消退的机制
  • 批准号:
    82370077
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
STAB1调控Fas/FasL介导牦牛胎盘滋养层细胞凋亡及胎盘炎症性流产的作用与机制研究
  • 批准号:
    32360836
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
ATAD3A琥珀酰化调控mtDNA损伤-泛凋亡反应轴在心梗后心衰中的作用研究
  • 批准号:
    82300434
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
胸腺肽α-1介导凋亡小体RNA改善DC功能增强TNBC化疗后抗肿瘤免疫应答的机制研究
  • 批准号:
    82303959
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
LSD1通过使组蛋白H3K4位点去甲基化促进自噬参与肾小管上皮细胞凋亡和肾脏纤维化的机制研究
  • 批准号:
    82300769
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Oxidative Lipidomics in Pediatric Traumatic Brain Injury
氧化脂质组学在小儿创伤性脑损伤中的应用
  • 批准号:
    10844023
  • 财政年份:
    2023
  • 资助金额:
    $ 38.75万
  • 项目类别:
Mitoquinone/mitoquinol mesylate as oral and safe Postexposure Prophylaxis for Covid-19
米托醌/甲磺酸米托喹诺作为 Covid-19 的口服且安全的暴露后预防
  • 批准号:
    10727092
  • 财政年份:
    2023
  • 资助金额:
    $ 38.75万
  • 项目类别:
Novel redox mechanisms of oxygenated phospholipids in chronic and diabetic kidney disease
慢性和糖尿病肾病中含氧磷脂的新氧化还原机制
  • 批准号:
    10752954
  • 财政年份:
    2023
  • 资助金额:
    $ 38.75万
  • 项目类别:
Molecular characterization of heme-carrying proteins targeted by S. pneumoniae-produced hydrogen peroxide to induce cell death
肺炎链球菌产生的过氧化氢诱导细胞死亡的血红素携带蛋白的分子特征
  • 批准号:
    10553870
  • 财政年份:
    2023
  • 资助金额:
    $ 38.75万
  • 项目类别:
Targeted Mitochondrial Delivery Systems for Vascular Interventions
用于血管干预的靶向线粒体输送系统
  • 批准号:
    10905155
  • 财政年份:
    2023
  • 资助金额:
    $ 38.75万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了