Improving chemical exposome target prediction by application of Coupled Matrix/Tensor-Matrix/Tensor Completion algorithms
通过应用耦合矩阵/张量矩阵/张量完成算法改进化学暴露组目标预测
基本信息
- 批准号:10734136
- 负责人:
- 金额:$ 11.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-02 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:AlgorithmsAwardBenchmarkingBioconductorBiologicalChemicalsChemistryCommunitiesComputing MethodologiesCoupledDataData ScienceData SetDatabasesDiseaseDoseDrug DesignDrug TargetingEnvironmental ExposureEnvironmental HealthEnvironmental ScienceExposure toFundingFutureGenomicsGenotype-Tissue Expression ProjectGoalsHealthHumanHuman Cell LineIn VitroMachine LearningMentorsMentorshipMethodsMichiganMolecularMolecular TargetNamesOutcomePerformancePersonsPhasePlayPoisonPoliciesProductionQuantitative Structure-Activity RelationshipReproducibilityResearchResearch PersonnelResourcesRoleScientistStandardizationTargeted ToxinsTestingTimeTissue-Specific Gene ExpressionTissuesToxic effectToxicity TestsToxicogenomicsToxicologyToxinTrainingUniversitiesValidationVisualizationcareercareer developmentcomparativedashboarddata integrationdata portalenvironmental chemicalenvironmental chemical exposuregene environment interactiongene expression databaseimprovedin silicoin vivolarge datasetsnonbinarynovelperformance testspublic health researchresearch and developmentresponsesafety assessmentweb portal
项目摘要
PROJECT SUMMARY
The exposome is defined as the totality of exposures with which the public comes in contact, including
toxic chemicals. Exposures to these chemicals represents a huge burden on human health and diseases.
It is difficult to perform comprehensive safety assessment of all novel chemicals due to limited time and
funds. However, with the vast amount of biological data related to thousands of exposures and their
molecular targets, we hypothesize computational methods can be developed to accurately predict the
molecular actions and targets of new chemicals. In this proposal, we propose to implement and apply a
novel matrix completion algorithm named Coupled Matrix/Tensor-Matrix Completion (CM/TMC)
and Coupled Matrix/Tensor-Tensor Completion (CM/TTC) to predict the molecular targets and
target tissues of environmental chemical exposures at a large scale. The study proposed will be
accomplished through the following specific aims: 1) Apply and optimize the CM/TMC algorithm for
exposure-related datasets, comparing results to alternative methods, 2) Optimize the CM/TMC method for
exposure target tissue prediction, and 3) develop CM/TTC method on exposure-target predictions,
perform experimental validations, and establish a web portal for exposure-target prediction. This study
poses the first matrix completion-based method on exposure molecular target predictions and target
tissue predictions. The primary goal of the mentored (K99) phase of the award is to provide the candidate
with additional training in data science and toxicology for him to acquire scientific independence and
successfully accomplish his career objectives. The K99 phase will be conducted at the University of
Michigan (UM), under the mentorship of Drs. Maureen Sartor, Justin Colacino, Kayvan Najarian, and
Mario Medvedovic, who are experts in the respective fields. An interdisciplinary team of advisors will
assist the candidate in his research and career development. After the completion of the K99 phase, the
candidate will be well prepared to be an independent investigator.
项目概要
暴露组被定义为公众接触到的暴露的总和,包括
有毒化学品。接触这些化学物质对人类健康和疾病造成巨大负担。
由于时间和条件有限,很难对所有新型化学品进行全面的安全评估
资金。然而,由于存在与数千次暴露及其相关的大量生物数据,
分子目标,我们假设可以开发计算方法来准确预测
新化学品的分子作用和目标。在本提案中,我们建议实施并应用
名为耦合矩阵/张量矩阵完成 (CM/TMC) 的新型矩阵完成算法
和耦合矩阵/张量-张量完成 (CM/TTC) 来预测分子目标和
大规模环境化学暴露的目标组织。拟议的研究将是
通过以下具体目标来实现: 1)应用并优化 CM/TMC 算法
与暴露相关的数据集,将结果与替代方法进行比较,2) 优化 CM/TMC 方法
暴露目标组织预测,3) 开发暴露目标预测的 CM/TTC 方法,
进行实验验证,并建立一个用于暴露目标预测的门户网站。这项研究
提出了第一个基于矩阵补全的曝光分子目标预测和目标方法
组织预测。该奖项的指导(K99)阶段的主要目标是为候选人提供
接受数据科学和毒理学方面的额外培训,以获得科学独立性和
成功实现他的职业目标。 K99阶段将在大学进行
密歇根大学(UM),在博士的指导下。莫琳·萨托、贾斯汀·科拉西诺、凯万·纳贾里安和
马里奥·梅德韦多维奇(Mario Medvedovic)是各自领域的专家。跨学科的顾问团队将
协助候选人的研究和职业发展。 K99阶段完成后,
候选人将为成为一名独立调查员做好充分准备。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Gene Target Prediction of Environmental Chemicals Using Coupled Matrix-Matrix Completion.
- DOI:10.1021/acs.est.4c00458
- 发表时间:2024-03
- 期刊:
- 影响因子:11.4
- 作者:Kai Wang;Nicole Kim;M. Bagherian;Kai Li;Elysia Chou;Justin A. Colacino;Dana C. Dolinoy;Maureen A. Sartor
- 通讯作者:Kai Wang;Nicole Kim;M. Bagherian;Kai Li;Elysia Chou;Justin A. Colacino;Dana C. Dolinoy;Maureen A. Sartor
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kai Wang其他文献
Kai Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kai Wang', 18)}}的其他基金
Dietary prevention for colorectal cancer: targeting the bile acid/gut microbiome axis
结直肠癌的饮食预防:针对胆汁酸/肠道微生物组轴
- 批准号:
10723195 - 财政年份:2023
- 资助金额:
$ 11.8万 - 项目类别:
Novel bioinformatics methods to detect DNA and RNA modifications using Nanopore long-read sequencing
使用 Nanopore 长读长测序检测 DNA 和 RNA 修饰的新型生物信息学方法
- 批准号:
10792416 - 财政年份:2023
- 资助金额:
$ 11.8万 - 项目类别:
Detection and annotation of structural variants from long-read sequencing
长读长测序结构变异的检测和注释
- 批准号:
10378720 - 财政年份:2019
- 资助金额:
$ 11.8万 - 项目类别:
Integrated Variation Detection Annotation and Analysis
集成变异检测注释和分析
- 批准号:
9402354 - 财政年份:2016
- 资助金额:
$ 11.8万 - 项目类别:
UNDERSTANDING THE FUNCTIONAL IMPACTS OF GENETIC VARIANTS IN MENTAL DISORDERS
了解遗传变异对精神疾病的功能影响
- 批准号:
9389287 - 财政年份:2016
- 资助金额:
$ 11.8万 - 项目类别:
Role of MTA3 in trophoblast function and placental development
MTA3 在滋养层功能和胎盘发育中的作用
- 批准号:
8919934 - 财政年份:2014
- 资助金额:
$ 11.8万 - 项目类别:
Integrated variation detection annotation and analysis for high-throughout seque
高通量序列的集成变异检测注释和分析
- 批准号:
8448070 - 财政年份:2012
- 资助金额:
$ 11.8万 - 项目类别:
Integrated variation detection annotation and analysis for high-throughout seque
高通量序列的集成变异检测注释和分析
- 批准号:
8813611 - 财政年份:2012
- 资助金额:
$ 11.8万 - 项目类别:
Integrated variation detection annotation and analysis for high-throughout seque
高通量序列的集成变异检测注释和分析
- 批准号:
8220672 - 财政年份:2012
- 资助金额:
$ 11.8万 - 项目类别:
Integrated variation detection annotation and analysis for high-throughout seque
高通量序列的集成变异检测注释和分析
- 批准号:
8628856 - 财政年份:2012
- 资助金额:
$ 11.8万 - 项目类别:
相似国自然基金
生态补奖背景下草原牧户实现自主性减畜的机制、路径和政策研究
- 批准号:72374130
- 批准年份:2023
- 资助金额:41 万元
- 项目类别:面上项目
草原生态补奖政策对牧户兼业行为的影响机理研究——以内蒙古为例
- 批准号:72363025
- 批准年份:2023
- 资助金额:28 万元
- 项目类别:地区科学基金项目
草原生态补奖政策对牧民调整草场经营行为的影响研究:作用机理、实证分析与政策优化
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
草原生态补奖政策激励-约束下牧民生产行为决策机制及生态效应
- 批准号:
- 批准年份:2020
- 资助金额:50 万元
- 项目类别:
华罗庚数学奖获得者座谈会及数学普及活动
- 批准号:11926407
- 批准年份:2019
- 资助金额:20.0 万元
- 项目类别:数学天元基金项目
相似海外基金
Quantitative Imaging Biomarker Prospective Validation of Dynamic Contrast-Enhanced MRI as a Metric of Orodental Injury After Radiotherapy (QI-ProVE-MRI)
动态对比增强 MRI 的定量成像生物标志物前瞻性验证作为放射治疗后口腔牙齿损伤的指标 (QI-ProVE-MRI)
- 批准号:
10668570 - 财政年份:2023
- 资助金额:
$ 11.8万 - 项目类别:
Understanding genomic stability betweengenerations by assessing mutational burdens in single sperms
通过评估单个精子的突变负担来了解代际基因组稳定性
- 批准号:
10740598 - 财政年份:2023
- 资助金额:
$ 11.8万 - 项目类别:
Development and implementation of a pediatric AI multi-modal digital stethoscope and respiratory surveillance system in South Africa
在南非开发和实施儿科人工智能多模态数字听诊器和呼吸监测系统
- 批准号:
10740943 - 财政年份:2023
- 资助金额:
$ 11.8万 - 项目类别:
Learn, transfer, generate: Developing novel deep learning models for enhancing robustness and accuracy of small-scale single-cell RNA sequencing studies
学习、转移、生成:开发新颖的深度学习模型,以增强小规模单细胞 RNA 测序研究的稳健性和准确性
- 批准号:
10535708 - 财政年份:2023
- 资助金额:
$ 11.8万 - 项目类别:
One-click Automated 3D Treatment Planning for Radiopharmaceutical Therapy
用于放射性药物治疗的一键式自动化 3D 治疗计划
- 批准号:
10550358 - 财政年份:2022
- 资助金额:
$ 11.8万 - 项目类别: