Examining Intensive Outpatient Programs as a Potential Mechanism to Reduce Suicide Risk During the Post-Hospitalization Period Among Medicaid Recipients

检查强化门诊计划作为减少医疗补助接受者住院后自杀风险的潜在机制

基本信息

  • 批准号:
    10733885
  • 负责人:
  • 金额:
    $ 76.33万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-11 至 2028-07-31
  • 项目状态:
    未结题

项目摘要

ABSTRACT Suicide is a top ten cause of mortality in the United States, and suicide rates have increased dramatically in recent decades. A recent meta-analysis showed that the suicide rate following discharge from a psychiatric facility was 2,078 per 100,000 person-years (versus 14.0 for the general population). Approximately one- quarter of all suicide deaths occur within 3 months of discharge from a psychiatric facility, making this a period of extremely high risk. With the advent of managed care in the 1990s and the concomitant decrease in hospital lengths of stay, Intensive Outpatient Programs/Partial Hospitalization Programs (IOP/PHPs) were instituted to manage high-risk patients outside of a locked hospital unit. Today, IOP/PHP services are frequently used in some areas as the principal discharge plan for patients upon leaving the hospital. However, there is virtually no evidence examining their clinical effects on suicide risk in this period. While these IOP/PHP services are readily available in some areas of the country, they are virtually non-existent in other regions. If IOP/PHP services have a significant protective effect against suicide following hospital discharge, implementation initiatives to broaden the availability of these services nationwide could be undertaken as a way to bend the curve against suicide. We hypothesize that the intense social and psychological support of IOP/PHPs will be reflected in a reduction in suicide risk among patients who receive treatment through these programs. We will test this hypothesis by conducting a propensity score matched observational study of patients who receive treatment at IOP/PHP services following discharge compared to patients who receive non-intensive outpatient follow-up. Cohorts for these groups will be sufficiently large (over 100,000 per group) to detect even small differences in suicide rates between intervention groups (minimum detectable rate ratio ranging from 0.82 to 0.95, see Table 4). The data for this project will be drawn from Medicaid databases and will be linked with the National Death Index, the most authoritative data source for mortality in the United States. Additionally, we will conduct a national survey of clinical directors of IOP/PHP services to identify and characterize clinical care processes. Survey results will be integrated with claims-based analyses to better understand what care processes may be effective in reducing suicide risk following hospital discharge as well as to understand the variations in quality of care throughout the country among IOP/PHP services. Results from this project would have important implications for policy and discharge planning patterns in the post-hospitalization period. Future directions would include dissemination and implementation initiatives to align discharge planning patterns with clinical evidence. A stakeholder council will be formed during the project to help implement strategies to enhance the availability of these services in locations where they are not widely accessible.
抽象的 自杀是美国死亡率的十大原因,自杀率在 最近几十年。最近的一项荟萃​​分析表明,从精神病学出院后的自杀率 设施为每100,000人年的2,078个(对普通人群为14.0)。大约一个 所有自杀死亡的四分之一发生在从精神病学院出院后的3个月内 风险极高。 随着1990年代托管护理的出现,医院长度随之减少 建立了住宿,密集的门诊计划/部分住院计划(IOP/PHP)进行管理 锁定医院单位外的高风险患者。今天,IOP/PHP服务经常在某些领域使用 作为离开医院时患者的主要出院计划。但是,几乎没有证据 在此期间检查他们对自杀风险的临床影响。虽然这些IOP/PHP服务很容易获得 在该国某些地区,它们在其他地区实际上不存在。如果IOP/PHP服务有一个 住院后,针对自杀的明显保护作用,实施倡议拓宽 可以在全国范围内提供这些服务的可用性,以弯曲自杀的曲线。 我们假设IOP/PHP的强烈社会和心理支持将反映在 通过这些计划接受治疗的患者的自杀风险降低。我们将测试这个 通过进行倾向评分与接受治疗的患者的观察性研究相匹配的假设 与接受非密集型门诊随访的患者相比,出院后的IOP/PHP服务。 这些组的队列将足够大(每组超过100,000),甚至可以检测到很小的差异 干预组之间的自杀率(最低可检测率比率为0.82至0.95,请参见表 4)。该项目的数据将从医疗补助数据库中获取,并将与国家死亡联系起来 索引,美国死亡率最具权威的数据来源。 此外,我们将对IOP/PHP服务的临床主管进行全国调查,以识别和 表征临床护理过程。调查结果将与基于索赔的分析相结合以更好 了解哪些护理过程也可能有效降低住院后自杀风险 要了解IOP/PHP服务中全国各地护理质量的差异。 该项目的结果对政策和出院计划模式具有重要意义 在院后时期。未来的指示将包括传播和实施计划 将放电计划模式与临床证据保持一致。利益相关者理事会将在 项目旨在实施策略以在其所在地提高这些服务的可用性 不广泛访问。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据

数据更新时间:2024-06-01

Taeho Gregory Rhee的其他基金

Epidemiology and Clinical Outcomes of Electroconvulsive Therapy Use in Nursing Home Residents with Dementia
痴呆症疗养院居民的流行病学和电休克治疗的临床结果
  • 批准号:
    10661910
    10661910
  • 财政年份:
    2023
  • 资助金额:
    $ 76.33万
    $ 76.33万
  • 项目类别:
Longitudinal Associations of Electroconvulsive Therapy with Neuropsychiatric Symptoms, Geriatric Syndromes, and Nursing Home Admission and Mortality Rates among Adults with Dementia
电休克治疗与神经精神症状、老年综合征以及成年痴呆症患者入住疗养院和死亡率的纵向关联
  • 批准号:
    10731345
    10731345
  • 财政年份:
    2023
  • 资助金额:
    $ 76.33万
    $ 76.33万
  • 项目类别:
Associations of Opioid Prescribing with Long-term Functional Outcomes and Mortality Rates in Older Nursing Home Residents
阿片类药物处方与老年疗养院居民的长期功能结果和死亡率之间的关系
  • 批准号:
    10480904
    10480904
  • 财政年份:
    2021
  • 资助金额:
    $ 76.33万
    $ 76.33万
  • 项目类别:
Associations of Opioid Prescribing with Long-term Functional Outcomes and Mortality Rates in Older Nursing Home Residents
阿片类药物处方与老年疗养院居民的长期功能结果和死亡率之间的关系
  • 批准号:
    10273544
    10273544
  • 财政年份:
    2021
  • 资助金额:
    $ 76.33万
    $ 76.33万
  • 项目类别:

相似海外基金

Michigan Emergency Department Improvement Collaborative AltERnaTives to admission for Pulmonary Embolism (MEDIC ALERT PE) Study
密歇根急诊科改进合作入院肺栓塞 (MEDIC ALERT PE) 研究
  • 批准号:
    10584217
    10584217
  • 财政年份:
    2023
  • 资助金额:
    $ 76.33万
    $ 76.33万
  • 项目类别:
Development of wireless, wearable flow sensors for continuous, long-term tracking of cerebrospinal fluid dynamics in patients with hydrocephalus
开发无线可穿戴流量传感器,用于连续、长期跟踪脑积水患者的脑脊液动力学
  • 批准号:
    10728656
    10728656
  • 财政年份:
    2023
  • 资助金额:
    $ 76.33万
    $ 76.33万
  • 项目类别:
Actionable categories of avoidable hospital care among adults with cancer
成人癌症患者可避免住院治疗的可行类别
  • 批准号:
    10714125
    10714125
  • 财政年份:
    2023
  • 资助金额:
    $ 76.33万
    $ 76.33万
  • 项目类别:
Using Machine Learning and Patient-Reported Outcomes to Identify Unnecessary Hospitalizations
使用机器学习和患者报告的结果来识别不必要的住院治疗
  • 批准号:
    10696203
    10696203
  • 财政年份:
    2022
  • 资助金额:
    $ 76.33万
    $ 76.33万
  • 项目类别:
Intensive Crisis Intervention
强化危机干预
  • 批准号:
    10676111
    10676111
  • 财政年份:
    2022
  • 资助金额:
    $ 76.33万
    $ 76.33万
  • 项目类别: