An evolutionary framework to elucidate and interpret the genetic architecture of complex traits in diverse populations
阐明和解释不同人群复杂性状遗传结构的进化框架
基本信息
- 批准号:10727037
- 负责人:
- 金额:$ 3.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-01 至 2023-11-30
- 项目状态:已结题
- 来源:
- 关键词:AccelerationAddressAllelesChildhood LeukemiaCollaborationsCommunitiesComplexData AnalysesDevelopmentDiseaseDisparityEtiologyEuropeanFutureGenealogical TreeGeneticGenetic ResearchGenomicsGoalsHeritabilityHistorical DemographyHumanIndividualLatino PopulationMedical GeneticsMeta-AnalysisModernizationNative HawaiianNon-Insulin-Dependent Diabetes MellitusObesityPerformancePersonsPhenotypePolynesianPopulationPopulation GeneticsPopulation HeterogeneityPositioning AttributeRecording of previous eventsResearchRiskThinkingVariantclinical practicedisorder riskethnic minorityexperiencegenetic analysisgenetic architecturegenetic epidemiologygenetic evolutiongenome resourcehealth disparityimprovedmethod developmentpersonalized carephenomepressureprogramstrait
项目摘要
Project Summary / Abstract
Both environmental and genetic factors contribute to disparity in disease risks between populations. The genetic
causes of differences between populations are intimately tied to the evolutionary histories of these populations.
Therefore, a better incorporation of evolutionary thinking will help explain the disparity among diverse populations
today and improve clinical practices and personalized care. To this end, the Chiang Lab will continue to develop
an integrative framework combining evolutionary population genetics with genetic epidemiology in
humans, utilizing both empirical data analysis and quantitative methods development to better probe into the
genetic architecture of complex traits within and between populations. This integrative framework consists of
three main foci: (1) the genetic architecture of human complex traits, (2) the demographic history, and (3) the
adaptive history of human populations. Research in the first topic informs the genetic consequences on our
phenome today, while research in the latter two explains the evolutionary mechanisms through which variation
arise within and between human populations. More importantly, research from the Chiang Lab focuses not solely
on these topics, but also leverages information on one to inform the other. Within this paradigm, the Chiang Lab
will focus on the following three goals over the next five years. First, we will execute a comprehensive genetic
research program to address the health disparities in Native Hawaiians. Specifically, we will generate the
genomic resources necessary to accelerate genetic research in this population. We will then characterize the
demographic history of the Native Hawaiians to illustrate the benefit of conducting genomic studies in
understudied populations, perform large-scale meta-analysis in Polynesian populations to identify population-
specific alleles associated with diseases prevalent in Native Hawaiians, and engage the Native Hawaiian
community for future partnership and collaborations. Second, we will investigate the evolutionary etiology for
elevated risk in present-day populations. Using Latino population as an example, we will examine if the
elevated risk in childhood leukemia in this population is due to the selective pressure introduced during European
contact in the 16th century. Third, we will revolutionize the current concept of genetic relatedness by
introducing a new genetic similarity matrix among individuals that incorporates information from the genealogical
tree of the population. This matrix will improve the performance of a number of statistical genetic applications,
such as heritability estimation and phenotype imputation. While we used Native Hawaiians and Latinos as
example populations in this proposal, this integrated framework of genetic epidemiology and evolution will also
benefit future research in other understudied ethnic minorities. We are uniquely positioned to achieve these
goals because of our expertise in combining population genetic principles with medical genetic analysis and
statistical genetic development.
项目概要/摘要
环境和遗传因素都会导致人群之间疾病风险的差异。遗传性
种群之间差异的原因与这些种群的进化历史密切相关。
因此,更好地结合进化思想将有助于解释不同人群之间的差异
今天,改善临床实践和个性化护理。为此,Chiang Lab将不断研发
将进化群体遗传学与遗传流行病学相结合的综合框架
人类利用经验数据分析和定量方法开发来更好地探讨
群体内部和群体之间复杂性状的遗传结构。该综合框架包括
三个主要焦点:(1)人类复杂性状的遗传结构,(2)人口历史,以及(3)
人类的适应历史。第一个主题的研究揭示了遗传对我们的影响
今天的现象组,而后两者的研究解释了变异的进化机制
出现在人群内部和人群之间。更重要的是,蒋实验室的研究不仅仅关注
讨论这些主题,同时也利用其中一个主题的信息来告知另一个主题。在这个范式中,蒋实验室
未来五年将重点实现以下三个目标。首先,我们将进行全面的基因检测
解决夏威夷原住民健康差异的研究计划。具体来说,我们将生成
加速该人群遗传研究所需的基因组资源。然后我们将描述
夏威夷原住民的人口历史,以说明在夏威夷开展基因组研究的好处
对波利尼西亚人群进行大规模荟萃分析,以确定人群
与夏威夷原住民中流行的疾病相关的特定等位基因,并吸引夏威夷原住民
未来伙伴关系和合作的社区。其次,我们将研究进化病因。
当今人群的风险升高。以拉丁裔人口为例,我们将检查是否
该人群儿童白血病风险升高是由于欧洲时期引入的选择压力
16世纪就有接触。第三,我们将彻底改变当前的遗传相关性概念
在个体之间引入一个新的遗传相似性矩阵,其中包含来自家谱的信息
人口树。该矩阵将提高许多统计遗传应用的性能,
例如遗传力估计和表型插补。虽然我们使用夏威夷原住民和拉丁裔作为
该提案中的示例人群,遗传流行病学和进化的综合框架也将
有利于其他受研究的少数民族的未来研究。我们拥有独特的优势来实现这些目标
目标是因为我们在将群体遗传原理与医学遗传分析相结合方面具有专业知识,
统计遗传发展。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
KLFDAPC: a supervised machine learning approach for spatial genetic structure analysis.
- DOI:10.1093/bib/bbac202
- 发表时间:2022-07-18
- 期刊:
- 影响因子:9.5
- 作者:
- 通讯作者:
Deciphering signatures of natural selection via deep learning.
- DOI:10.1093/bib/bbac354
- 发表时间:2022-09-20
- 期刊:
- 影响因子:9.5
- 作者:
- 通讯作者:
The Opportunities and Challenges of Integrating Population Histories Into Genetic Studies for Diverse Populations: A Motivating Example From Native Hawaiians.
- DOI:10.3389/fgene.2021.643883
- 发表时间:2021
- 期刊:
- 影响因子:3.7
- 作者:Chiang CWK
- 通讯作者:Chiang CWK
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Charleston Chiang其他文献
Charleston Chiang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Charleston Chiang', 18)}}的其他基金
A genome-wide genealogical framework for statistical and population genetic analysis
用于统计和群体遗传分析的全基因组谱系框架
- 批准号:
10658562 - 财政年份:2023
- 资助金额:
$ 3.2万 - 项目类别:
Leveraging the Evolutionary History to Improve Identification of Trait-Associated Alleles and Risk Stratification Models in Native Hawaiians
利用进化历史来改进夏威夷原住民性状相关等位基因的识别和风险分层模型
- 批准号:
10689017 - 财政年份:2022
- 资助金额:
$ 3.2万 - 项目类别:
Leveraging the Evolutionary History to Improve Identification of Trait-Associated Alleles and Risk Stratification Models in Native Hawaiians
利用进化历史来改进夏威夷原住民性状相关等位基因的识别和风险分层模型
- 批准号:
10365815 - 财政年份:2022
- 资助金额:
$ 3.2万 - 项目类别:
An evolutionary framework to elucidate and interpret the genetic architecture of complex traits in diverse populations - diversity supplement
阐明和解释不同群体复杂性状遗传结构的进化框架 - 多样性补充
- 批准号:
10539156 - 财政年份:2021
- 资助金额:
$ 3.2万 - 项目类别:
An evolutionary framework to elucidate and interpret the genetic architecture of complex traits in diverse populations
阐明和解释不同人群复杂性状遗传结构的进化框架
- 批准号:
10624515 - 财政年份:2021
- 资助金额:
$ 3.2万 - 项目类别:
An evolutionary framework to elucidate and interpret the genetic architecture of complex traits in diverse populations
阐明和解释不同人群复杂性状遗传结构的进化框架
- 批准号:
10640193 - 财政年份:2021
- 资助金额:
$ 3.2万 - 项目类别:
An evolutionary framework to elucidate and interpret the genetic architecture of complex traits in diverse populations
阐明和解释不同人群复杂性状遗传结构的进化框架
- 批准号:
10458746 - 财政年份:2021
- 资助金额:
$ 3.2万 - 项目类别:
An evolutionary framework to elucidate and interpret the genetic architecture of complex traits in diverse populations
阐明和解释不同人群复杂性状遗传结构的进化框架
- 批准号:
10275367 - 财政年份:2021
- 资助金额:
$ 3.2万 - 项目类别:
Using whole genomes to study demography and mapping power of a population isolate
使用全基因组研究人口统计学和群体隔离的绘图能力
- 批准号:
8527468 - 财政年份:2013
- 资助金额:
$ 3.2万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
HMGB1 in EB-Associated Squamous Cell Carcinoma
EB 相关鳞状细胞癌中的 HMGB1
- 批准号:
10676346 - 财政年份:2023
- 资助金额:
$ 3.2万 - 项目类别:
Effects of Aging on Neuronal Lysosomal Damage Responses Driven by CMT2B-linked Rab7
衰老对 CMT2B 相关 Rab7 驱动的神经元溶酶体损伤反应的影响
- 批准号:
10678789 - 财政年份:2023
- 资助金额:
$ 3.2万 - 项目类别:
Augmenting Pharmacogenetics with Multi-Omics Data and Techniques to Predict Adverse Drug Reactions to NSAIDs
利用多组学数据和技术增强药物遗传学,预测 NSAID 的药物不良反应
- 批准号:
10748642 - 财政年份:2023
- 资助金额:
$ 3.2万 - 项目类别:
Optimization of CRISPR genome editor and its delivery strategy for C9orf72 frontotemporal dementia
C9orf72额颞叶痴呆的CRISPR基因组编辑器优化及其递送策略
- 批准号:
10746565 - 财政年份:2023
- 资助金额:
$ 3.2万 - 项目类别:
Molecular origins and evolution to chemoresistance in germ cell tumors
生殖细胞肿瘤中化学耐药性的分子起源和进化
- 批准号:
10443070 - 财政年份:2023
- 资助金额:
$ 3.2万 - 项目类别: