Nanoformulated CRISPR Ribonucleoproteins for Ultrasound-Facilitated Brain Gene Editing
用于超声辅助脑基因编辑的纳米 CRISPR 核糖核蛋白
基本信息
- 批准号:10727386
- 负责人:
- 金额:$ 44.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:Adverse effectsAlzheimer&aposs DiseaseAlzheimer&aposs disease modelAmyloid beta-ProteinAnimal ModelAnimal TestingAnimalsBar CodesBiological ProductsBlood - brain barrier anatomyBrainBrain regionCRISPR therapeuticsCRISPR/Cas technologyChargeClinical TrialsClustered Regularly Interspaced Short Palindromic RepeatsDNADevelopmentDiffusionDiseaseEncapsulatedExploratory/Developmental Grant for Diagnostic Cancer ImagingFailureFocused UltrasoundFormulationGenesGenetic DiseasesGuide RNALibrariesLigaseLigationLightLipidsLiposomesLiverMediatingMethodsModelingMouse StrainsMusNational Institute of Mental HealthNational Institute of Neurological Disorders and StrokeNatureNerve DegenerationNeuronsNucleic AcidsPerformanceRaceReporterReproducibilityResearchRibonucleoproteinsRunningSafetySamplingSurfaceSystemTLR2 geneTechniquesTechnologyTimeToxic effectTransfectionTransgenic OrganismsTranslationsTreatment EfficacyUnited States National Institutes of HealthValidationVariantViralViral GenesViral Vectoradeno-associated viral vectorbehavior testblood-brain barrier crossingbrain tissuedesignefficacy evaluationexperiencegene therapyimmunogenicityimprovedmouse modelnanonanoformulationnanoparticleoperationpost-doctoral trainingscreeningsomatic cell gene editingtau Proteinsultrasoundvector
项目摘要
Nanoformulated CRISPR Ribonucleoproteins for Ultrasound-facilitated Brain Gene Editing
Abstract
Emerging CRISPR technologies provide new opportunities to advance gene therapy in treating many
intractable genetic diseases, including neuronal degeneration disorders. Given the failures of clinical trials in
treating Alzheimer's disease through directly targeting amyloid β and tau, there is an unmet need to develop a
different strategy in this space, and gene editing technologies may be of great potential. However, one key barrier
in developing CRISPR therapeutics is the brain delivery of CRISPR components. Viral vectors could be effective,
but the use of these vectors could potentially raise the concerns in immunogenicity and toxicity, which may lead
to severe adverse effects. Conventional nonviral systems, in contrast, could be safer but significantly less
effective, possibly due to the suboptimal size, which limits their transport to the target brain region. In light of
these challenges, we propose to explore the feasibility of screening more transport-favorable, effective nonviral
carriers for brain gene editing to tackle Alzheimer's disease. Different from the conventional nanoparticle designs,
we will first create a large nanoformulated CRISPR/Cas9 ribonucleoprotein library through split-and-pool lipid
coating and optimize the focused ultrasound (FUS)-mediated blood-brain barrier opening to screen all the
possible lipid compositions (Aim 1). Compared with the conventional nanoparticle formulations, direct lipid
coating may generate smaller and more transport-favorable “nano editors.” By barcoding each lipid in each split-
and-pool round, all the nanoformulated Cas9 ribonucleoproteins can be screened directly in the same animal,
which minimizes the variations from animals and operations. Our preliminary studies with a small set of
nanoformulations in different models have demonstrated the feasibility and reproducibility of our screening
approach. Once having the most potent lipid composition, we will validate its gene editing performance and
therapeutic efficacy in both reporter and Alzheimer’s mouse models (Aim 2). Our previous efforts in developing
FUS delivery for viral brain gene editing have helped us established the capability and all the pipelines needed
for editing performance validations. In this proposed research, we aim to expand the CRISPR delivery toolkits
from viral to nonviral systems and to explore the potential of nonviral CRISPR gene editing for treating
Alzheimer’s disease. The discoveries and findings will help us gain enough supports for larger, potentially IND-
enabling studies.
纳米成型CRISPR核糖核蛋白用于超声处理的脑基因编辑
抽象的
新兴的CRISPR技术为推进基因疗法提供了新的机会,以治疗许多
棘手的遗传疾病,包括神经元变性疾病。考虑到临床试验的失败
通过直接靶向淀粉样β和tau来治疗阿尔茨海默氏病,有未满足的需求
在这个领域的不同策略,基因编辑技术可能具有很大的潜力。但是,一个关键障碍
在开发CRISPR理论中,CRISPR组件的大脑传递。病毒载体可能有效,
但是这些向量的使用可能会引起对免疫原性和毒性的关注,这可能导致
严重不利影响。相比之下,常规的非病毒系统可能是安全的,但要少得多
有效,由于次优尺寸而可能导致,这限制了其运输到目标大脑区域。鉴于
这些挑战,我们建议探索筛查更有效,有效的非病毒的可行性
用于解决阿尔茨海默氏病的脑基因编辑的载体。与常规纳米颗粒设计不同,
我们将首先通过分裂脂质脂质创建一个大型纳米纳米制造的CRISPR/CAS9核糖核蛋白库
涂层并优化聚焦超声(FUS)介导的血脑屏障开口,以筛选所有
可能的脂质组成(目标1)。与常规纳米颗粒配方相比,直接脂质
涂层可能会产生更小,更有利的“纳米编辑器”。通过对每个分裂中的每种脂质进行条形码
和池塘圆,所有纳米成型的Cas9核糖核蛋白可以直接在同一动物中筛选
这可以最大程度地减少动物和手术的变化。我们的初步研究,一小部分
不同模型中的纳米制剂证明了我们筛选的可行性和可重复性
方法。一旦具有最有效的脂质组成,我们将验证其基因编辑性能和
记者和阿尔茨海默氏症小鼠模型的治疗效率(AIM 2)。我们以前在发展方面的努力
病毒脑基因编辑的FUS输送帮助我们确定了能力和所有所需的管道
用于编辑性能验证。在这项拟议的研究中,我们旨在扩大CRISPR交付工具包
从病毒到非病毒系统,并探索非病毒CRISPR基因编辑的潜力
阿尔茨海默氏病。这些发现和发现将有助于我们获得足够的支持
启用研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yeh-Hsing Lao其他文献
Yeh-Hsing Lao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Nursing homes' visitation bans during the COVID-19 pandemic: Effectiveness and consequences.
COVID-19 大流行期间疗养院的探视禁令:有效性和后果。
- 批准号:
10635829 - 财政年份:2023
- 资助金额:
$ 44.2万 - 项目类别:
Traumatic Brain Injury Anti-Seizure Prophylaxis in the Medicare Program
医疗保险计划中的创伤性脑损伤抗癫痫预防
- 批准号:
10715238 - 财政年份:2023
- 资助金额:
$ 44.2万 - 项目类别:
KLOTHO and Resilience to Synaptic Dysfunction in Preclinical AD
KLOTHO 和临床前 AD 中突触功能障碍的恢复力
- 批准号:
10587987 - 财政年份:2023
- 资助金额:
$ 44.2万 - 项目类别:
Measuring the Impact of the Value Flower and Unobserved Heterogeneity on the Cost Effectiveness and Use of Novel Treatments for Alzheimer's Disease and Related Dementias
衡量价值花和未观察到的异质性对阿尔茨海默病和相关痴呆症新疗法的成本效益和使用的影响
- 批准号:
10658457 - 财政年份:2023
- 资助金额:
$ 44.2万 - 项目类别:
The contribution of air pollution to racial and ethnic disparities in Alzheimer’s disease and related dementias: An application of causal inference methods
空气污染对阿尔茨海默病和相关痴呆症的种族和民族差异的影响:因果推理方法的应用
- 批准号:
10642607 - 财政年份:2023
- 资助金额:
$ 44.2万 - 项目类别: