Nanoformulated CRISPR Ribonucleoproteins for Ultrasound-Facilitated Brain Gene Editing
用于超声辅助脑基因编辑的纳米 CRISPR 核糖核蛋白
基本信息
- 批准号:10727386
- 负责人:
- 金额:$ 44.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:Adverse effectsAlzheimer&aposs DiseaseAlzheimer&aposs disease modelAmyloid beta-ProteinAnimal ModelAnimal TestingAnimalsBar CodesBiological ProductsBlood - brain barrier anatomyBrainBrain regionCRISPR therapeuticsCRISPR/Cas technologyChargeClinical TrialsClustered Regularly Interspaced Short Palindromic RepeatsDNADevelopmentDiffusionDiseaseEncapsulatedExploratory/Developmental Grant for Diagnostic Cancer ImagingFailureFocused UltrasoundFormulationGenesGenetic DiseasesGuide RNALibrariesLigaseLigationLightLipidsLiposomesLiverMediatingMethodsModelingMouse StrainsMusNational Institute of Mental HealthNational Institute of Neurological Disorders and StrokeNatureNerve DegenerationNeuronsNucleic AcidsPerformanceRaceReporterReproducibilityResearchRibonucleoproteinsRunningSafetySamplingSurfaceSystemTLR2 geneTechniquesTechnologyTimeToxic effectTransfectionTransgenic OrganismsTranslationsTreatment EfficacyUnited States National Institutes of HealthValidationVariantViralViral GenesViral Vectoradeno-associated viral vectorbehavior testblood-brain barrier crossingbrain tissuedesignefficacy evaluationexperiencegene therapyimmunogenicityimprovedmouse modelnanonanoformulationnanoparticleoperationpost-doctoral trainingscreeningsomatic cell gene editingtau Proteinsultrasoundvector
项目摘要
Nanoformulated CRISPR Ribonucleoproteins for Ultrasound-facilitated Brain Gene Editing
Abstract
Emerging CRISPR technologies provide new opportunities to advance gene therapy in treating many
intractable genetic diseases, including neuronal degeneration disorders. Given the failures of clinical trials in
treating Alzheimer's disease through directly targeting amyloid β and tau, there is an unmet need to develop a
different strategy in this space, and gene editing technologies may be of great potential. However, one key barrier
in developing CRISPR therapeutics is the brain delivery of CRISPR components. Viral vectors could be effective,
but the use of these vectors could potentially raise the concerns in immunogenicity and toxicity, which may lead
to severe adverse effects. Conventional nonviral systems, in contrast, could be safer but significantly less
effective, possibly due to the suboptimal size, which limits their transport to the target brain region. In light of
these challenges, we propose to explore the feasibility of screening more transport-favorable, effective nonviral
carriers for brain gene editing to tackle Alzheimer's disease. Different from the conventional nanoparticle designs,
we will first create a large nanoformulated CRISPR/Cas9 ribonucleoprotein library through split-and-pool lipid
coating and optimize the focused ultrasound (FUS)-mediated blood-brain barrier opening to screen all the
possible lipid compositions (Aim 1). Compared with the conventional nanoparticle formulations, direct lipid
coating may generate smaller and more transport-favorable “nano editors.” By barcoding each lipid in each split-
and-pool round, all the nanoformulated Cas9 ribonucleoproteins can be screened directly in the same animal,
which minimizes the variations from animals and operations. Our preliminary studies with a small set of
nanoformulations in different models have demonstrated the feasibility and reproducibility of our screening
approach. Once having the most potent lipid composition, we will validate its gene editing performance and
therapeutic efficacy in both reporter and Alzheimer’s mouse models (Aim 2). Our previous efforts in developing
FUS delivery for viral brain gene editing have helped us established the capability and all the pipelines needed
for editing performance validations. In this proposed research, we aim to expand the CRISPR delivery toolkits
from viral to nonviral systems and to explore the potential of nonviral CRISPR gene editing for treating
Alzheimer’s disease. The discoveries and findings will help us gain enough supports for larger, potentially IND-
enabling studies.
用于超声辅助脑基因编辑的纳米 CRISPR 核糖核蛋白
抽象的
新兴的 CRISPR 技术为推进基因疗法治疗许多疾病提供了新的机会
鉴于临床试验的失败,包括神经元变性疾病在内的顽固性遗传疾病。
通过直接靶向 β 淀粉样蛋白和 tau 蛋白来治疗阿尔茨海默氏病,开发一种未满足的需求
这一领域有不同的策略,基因编辑技术可能具有巨大的潜力,但有一个关键障碍。
开发 CRISPR 疗法的关键在于 CRISPR 成分的大脑传递可能是有效的,
但这些载体的使用可能会引起免疫原性和毒性的担忧,这可能会导致
相比之下,传统的非病毒系统可能更安全,但副作用要小得多。
有效,可能是由于尺寸不理想,限制了它们向目标大脑区域的运输。
针对这些挑战,我们建议探索筛选更利于运输、有效的非病毒的可行性
与传统的纳米粒子设计不同,大脑基因编辑的载体可以治疗阿尔茨海默病。
我们将首先通过脂质分离和池化创建一个大型纳米配方 CRISPR/Cas9 核糖核蛋白文库
涂层并优化聚焦超声(FUS)介导的血脑屏障开口,以筛查所有
可能的脂质成分(目标1)与传统的纳米颗粒制剂相比,直接脂质。
通过对每个分裂中的每种脂质进行条形码编码,涂层可以产生更小、更利于运输的“纳米编辑器”。
和池轮,所有纳米配方的Cas9核糖核蛋白都可以直接在同一动物中进行筛选,
这最大限度地减少了动物和操作的差异。
不同模型中的纳米制剂证明了我们筛选的可行性和可重复性
一旦获得最有效的脂质成分,我们将验证其基因编辑性能和
在报告基因和阿尔茨海默病治疗小鼠模型中的疗效(目标 2)。
用于病毒脑基因编辑的 FUS 交付帮助我们建立了所需的能力和所有管道
在这项拟议的研究中,我们的目标是扩展 CRISPR 递送工具包。
从病毒到非病毒系统,并探索非病毒 CRISPR 基因编辑治疗的潜力
阿尔茨海默病的发现和发现将帮助我们为更大规模的、潜在的 IND 获得足够的支持。
赋能研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yeh-Hsing Lao其他文献
Yeh-Hsing Lao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
基于神经退行性疾病前瞻性队列的新烟碱类杀虫剂暴露对阿尔茨海默病的影响及作用机制研究
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
基于miRNA介导ceRNA网络调控作用的防治阿尔茨海默病及认知障碍相关疾病药物的发现研究
- 批准号:
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
LMTK1调控核内体转运介导阿尔茨海默病神经元Reserve机制研究
- 批准号:81903703
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
基于自组装多肽纳米探针检测蛋白标志物用于阿尔茨海默病精准诊断的研究
- 批准号:31900984
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
靶向干预CD33/Aβ相互作用改善小胶质细胞功能延缓AD病理进程
- 批准号:81901072
- 批准年份:2019
- 资助金额:20.5 万元
- 项目类别:青年科学基金项目
相似海外基金
The contribution of air pollution to racial and ethnic disparities in Alzheimer’s disease and related dementias: An application of causal inference methods
空气污染对阿尔茨海默病和相关痴呆症的种族和民族差异的影响:因果推理方法的应用
- 批准号:
10642607 - 财政年份:2023
- 资助金额:
$ 44.2万 - 项目类别:
Traumatic Brain Injury Anti-Seizure Prophylaxis in the Medicare Program
医疗保险计划中的创伤性脑损伤抗癫痫预防
- 批准号:
10715238 - 财政年份:2023
- 资助金额:
$ 44.2万 - 项目类别:
Measuring the Impact of the Value Flower and Unobserved Heterogeneity on the Cost Effectiveness and Use of Novel Treatments for Alzheimer's Disease and Related Dementias
衡量价值花和未观察到的异质性对阿尔茨海默病和相关痴呆症新疗法的成本效益和使用的影响
- 批准号:
10658457 - 财政年份:2023
- 资助金额:
$ 44.2万 - 项目类别:
Nursing homes' visitation bans during the COVID-19 pandemic: Effectiveness and consequences.
COVID-19 大流行期间疗养院的探视禁令:有效性和后果。
- 批准号:
10635829 - 财政年份:2023
- 资助金额:
$ 44.2万 - 项目类别:
A novel therapeutic approach for Alzheimer Disease (AD)
阿尔茨海默病(AD)的新治疗方法
- 批准号:
10740016 - 财政年份:2023
- 资助金额:
$ 44.2万 - 项目类别: