Decoding the Interferome by Mapping Genetic Interactions in Human Tissue
通过绘制人体组织中的遗传相互作用来解码干扰素
基本信息
- 批准号:10725446
- 负责人:
- 金额:$ 48.31万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-10 至 2028-07-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAnatomyAntibacterial ResponseBacterial InfectionsBiologicalBiological AssayBordetella pertussisBuffersCRISPR screenCell CommunicationCell LineageCellsChlamydophila pneumoniaeChromosome MappingClustered Regularly Interspaced Short Palindromic RepeatsCollaborationsComplexCytokine SignalingCytosolEndotheliumEpitheliumFibroblastsFrustrationFutureGene CombinationsGenesGeneticGenetic ScreeningGenetic TranscriptionGenomicsGoalsHealthHost DefenseHost resistanceHumanHuman GenomeImageImmuneImmune responseImmune signalingImmune systemImmunityImmunologyIndividualInfectionInterferon Type IIInterferonsIntestinesLinkLungLymphocyteMacrophageMapsMediatingMediatorMethodsMicrobeModelingMolecularNetwork-basedOrganOrgan DonorOrganoidsOutcomePathologicPathologyPathway interactionsPatternPhenotypePostdoctoral FellowPredispositionProteinsProtozoan InfectionsRoleShapesShelter facilitySignal TransductionSiteStructureStructure of parenchyma of lungSystemTechniquesTissuesValidationVirus DiseasesVisionWorkairway epitheliumarmbactericidecell typecellular imagingcombatcombinatorialcytokinecytokine release syndromeempowermentfunctional outcomesgene functiongene networkgene productgenomic locushuman modelhuman tissueimmunopathologyinfancyinnovationinsightintestinal epitheliumlung pathogenmutantnovelnovel strategiespathogenprogramsresponsesingle-cell RNA sequencingsynergismtechnology developmenttherapeutic targetvirtual
项目摘要
PROJECT SUMMARY
Non-immune cells greatly outnumber professional immune cells in the body, providing intracellular pathogens
with many opportunities to shelter and take refuge. How does the immune system protect this huge landscape?
My previous work described the ability of the immune cytokine interferon-g (IFN-g), classically considered a
macrophage activating protein, to broadly activate non-immune cells and confer the ability to mount sterilizing
cell-intrinsic responses through effectors encoded by Interferon-Stimulated Genes (ISGs), collectively termed
the ‘interferome’. However, our understanding of how ISGs execute tissue localized responses is in its infancy,
with remarkably few of these effectors being well characterized and virtually nothing known about how multiple
ISGs functionally interact to achieve host defense. The principal barrier to understanding ISGs is that they rarely
work in isolation; rather they are part of complex genetic networks that are buffered from the phenotypic effects
of perturbation. I propose a radical new strategy that exploits this genetic complexity by mapping functional
relationships between ISGs using combinatorial forward genetic screens. My central hypothesis is that
systematically mapping genetic interactions will uncover the effectors of localized IFN-g signalling and enable
hierarchical organization of ISG products into functional complexes and pathways (network) that execute specific
protective and pathological responses. On a small scale with a single query gene in my postdoctoral work, this
approach unveiled a pair of synergistic ISGs that execute unexpectedly potent bactericidal defense of the
cytosol. Further development of this technology for use at a larger scale in my own lab will provide the framework
to fully deconvolve the interferome into distinct host resistance pathways. I will develop an experimental pipeline
that enlists a pooled CRISPR-based screening system for multi-locus gene perturbation paired with a novel
single cell imaging and expression analysis platform. Focusing on the human airway epithelium, this innovative
approach will be applied to dissect the ISG-encoded effectors that mediate cell-intrinsic control of three diverse
pulmonary pathogens (C. pneumoniae, B. pertussis, and RSV), and those that mediate lung tissue damage
downstream of cytokine storm. Newly identified ISGs and their connections will be validated for their protective
or pathological activities using tissue explant systems from donated human lungs and models of human lung
organoids. The ensuing genetic interaction network will provide unprecedented insight into the effectors that
dictate infection outcome in the human lung during type 1 immune responses. These findings will reveal new
local therapeutic targets and establish a paradigm for appreciating the full spectrum of immunity. The
approaches pioneered here will also extend to the downstream effectors of other non-immune cells and tissues
whose integrated study will define a new biological landscape of critical importance to human health.
项目概要
体内非免疫细胞的数量大大超过专业免疫细胞,提供细胞内病原体
有很多庇护和避难的机会,免疫系统如何保护这片广阔的土地?
我之前的工作描述了免疫细胞因子干扰素-g (IFN-g) 的能力,通常被认为是
巨噬细胞激活蛋白,广泛激活非免疫细胞并赋予其杀菌能力
通过干扰素刺激基因 (ISG) 编码的效应子产生的细胞内在反应,统称为
然而,我们对 ISG 如何执行组织局部反应的理解还处于起步阶段,
这些效应器中很少有被充分表征的,并且几乎不知道如何多重
ISG 在功能上相互作用以实现宿主防御,理解 ISG 的主要障碍是它们很少。
孤立地工作;相反,它们是复杂遗传网络的一部分,不受表型效应的影响。
我提出了一种全新的策略,通过映射函数来利用这种遗传复杂性。
使用组合正向遗传筛选来研究 ISG 之间的关系 我的中心假设是
系统地绘制遗传相互作用图谱将揭示局部 IFN-g 信号传导的效应器,并使得
将 ISG 产品分层组织成执行特定功能的复合体和路径(网络)
在我的博士后工作中,在小范围内使用单个查询基因,这就是保护性和病理性反应。
该方法揭示了一对协同的 ISG,它们对细菌执行出乎意料的有效防御
细胞溶胶的进一步开发将提供框架,以便在我自己的实验室中更大规模地使用。
为了将干扰素完全分解为不同的宿主抗性途径,我将开发一个实验管道。
该项目采用了一个基于 CRISPR 的混合筛选系统,用于多位点基因扰动,并与一种新颖的
这一创新的单细胞成像和表达分析平台专注于人类气道上皮。
该方法将用于剖析 ISG 编码的效应器,这些效应器介导三种不同的细胞内在控制
肺部病原体(肺炎衣原体、百日咳博德氏菌和 RSV)以及介导肺组织损伤的病原体
新发现的 ISG 及其连接的保护作用将得到验证。
或使用来自捐赠的人肺和人肺模型的组织外植体系统进行病理活动
随后的遗传相互作用网络将为效应子提供前所未有的见解。
这些发现将揭示 1 型免疫反应期间人类肺部的感染结果。
局部治疗目标并建立了解全方位免疫的范例。
这里开创的方法还将扩展到其他非免疫细胞和组织的下游效应器
其综合研究将定义对人类健康至关重要的新生物景观。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ryan Gilbert Gaudet其他文献
Ryan Gilbert Gaudet的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
儿童脊柱区腧穴针刺安全性的发育解剖学及三维数字化研究
- 批准号:82360892
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
寰枢椎脱位后路钉棒内固定系统复位能力优化的相关解剖学及生物力学研究
- 批准号:82272582
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
亚热带典型阔叶树种径向生长的解剖学特征及其碳分配调控机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于次生乳管网络结构发育比较解剖学和转录组学的橡胶树产胶机制研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
基于垂体腺瘤海绵窦侵袭模式的相关膜性解剖学及影像学研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
情報伝達の主体となるグリア細胞の解剖学的分類と機能解析
信息传递主体胶质细胞的解剖分类与功能分析
- 批准号:
24H00589 - 财政年份:2024
- 资助金额:
$ 48.31万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
全脳の解剖学的結合と瞬間的機能的結合を統合したてんかん発作伝播ネットワーク解析
整合全脑解剖连接和瞬时功能连接的癫痫发作传播网络分析
- 批准号:
24K19527 - 财政年份:2024
- 资助金额:
$ 48.31万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
ロマン主義パラダイムの領域横断的研究―19世紀前半の比較解剖学・地質学・古生物学
浪漫主义范式的跨学科研究:19世纪上半叶的比较解剖学、地质学和古生物学
- 批准号:
24K03740 - 财政年份:2024
- 资助金额:
$ 48.31万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The neural underpinnings of speech and nonspeech auditory processing in autism: Implications for language
自闭症患者言语和非言语听觉处理的神经基础:对语言的影响
- 批准号:
10827051 - 财政年份:2024
- 资助金额:
$ 48.31万 - 项目类别:
Linking Epidermis and Mesophyll Signalling. Anatomy and Impact in Photosynthesis.
连接表皮和叶肉信号传导。
- 批准号:
EP/Z000882/1 - 财政年份:2024
- 资助金额:
$ 48.31万 - 项目类别:
Fellowship