Generalized prediction errors in the human cerebellum
人类小脑的广义预测误差
基本信息
- 批准号:10715334
- 负责人:
- 金额:$ 41.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2028-05-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAnimalsArchitectureAssociation LearningBehaviorBehavioralBrainBrain regionCerebellar DiseasesCerebellumClinicalCognitionComputational TechniqueComputer AnalysisComputer ModelsDevelopmentDiseaseDisparateEventFeedbackFunctional Magnetic Resonance ImagingHealthHeterogeneityHumanIndividualInvestigationKnowledgeLanguageLearningLinkMeasuresModelingMotorMovementNeuronsOutcomePathologyPositioning AttributeProcessPsychological reinforcementReflex actionResearchRestRewardsRoleSamplingSensoryShort-Term MemorySignal TransductionStimulusStructureTestingTimeVisualWorkcognitive controlcognitive taskdesignexperimental studyeyeblink conditioninginsightlearning networkmotor controlmotor learningmultimodalityneuroimagingnovelsensory inputsocial cognitionstatistical learningtheories
项目摘要
Project Summary
In addition to motor control and learning, the cerebellum is intimately linked to cognition. This project is
designed to closely examine the cerebellum's role in nonmotor domains, namely, reinforcement learning and
statistical learning. We hypothesize that the structure's core computations for sensorimotor learning can be
generalized to nonmotor contexts. It is critical to understand how the cerebellum contributes to nonmotor learning
– this knowledge will support the development of novel mechanistic and clinical insights into cerebellar function,
and human learning in general.
Foundational theoretical work has described how the cerebellum typifies an ideal substrate for supervised
motor learning. This theory made testable empirical predictions that have been borne out in experiments in
animals using tasks such as Pavlovian eyeblink conditioning and vestibular-ocular reflex adaptation, revealing
facts about cerebellar sensorimotor processes in exquisite detail. But what about a cerebellar role in other task
domains? Here we address this question. The proposed work integrates behavioral, neuroimaging, and
computational techniques to develop a new framework for generalized cerebellar learning computations.
The research plan centers on three Specific Aims. In Aim 1 we use computationally guided functional
neuroimaging (fMRI) to examine the role of the cerebellum in reinforcement learning. We test the idea that the
cerebellum processes reward predictions and prediction errors, the core computations of reinforcement learning.
We also posit a constraint on cerebellar learning computations, namely that the structure only contributes to
learning when the temporal interval between events is brief (i.e., subsecond). Aim 2 takes a similar approach to
the domain of visual statistical learning, examining sensory predictions and prediction errors in the cerebellum
and further testing the proposed timing constraint. In Aims 1-2 we also measure cerebro-cerebellar connectivity
to position the cerebellum within broader task-specific learning networks, and to ask if cerebro-cerebellar
connectivity covaries with behavior. In Aim 3 we examine causal contributions of the cerebellum to nonmotor
learning, testing a large sample of individuals with cerebellar pathology and contrasting their behavior with
matched controls. Computational analyses will be used to detect and characterize the hypothesized deficits. This
project proposes a new framework for understanding the contributions of the cerebellum to nonmotor learning
and will provide new insight into the broader role of the cerebellum in health and disease.
项目概要
除了运动控制和学习之外,小脑还与认知密切相关。
旨在仔细检查小脑在非运动领域的作用,即强化学习和
我们发现该结构的感觉运动学习的核心计算可以是
推广到非运动环境中,了解小脑如何促进非运动学习至关重要。
– 这些知识将支持对小脑功能的新机制和临床见解的发展,
以及人类的一般学习。
基础理论工作描述了小脑如何成为监督的理想基质。
该理论做出了可检验的经验预测,并已在实验中得到证实。
动物使用巴甫洛夫眨眼调节和前庭眼反射适应等任务,揭示了
关于小脑感觉运动过程的详细事实,但是小脑在其他任务中的作用又如何呢?
在这里,我们解决了这个问题。
计算技术来开发广义小脑学习计算的新框架。
该研究计划以三个具体目标为中心,在目标 1 中,我们使用计算引导的函数。
神经成像(fMRI)来检查小脑在强化学习中的作用我们测试了这个想法。
小脑处理奖励预测和预测误差,这是强化学习的核心计算。
我们还对小脑学习计算提出了限制,即该结构仅有助于
当事件之间的时间间隔很短(即亚秒)时进行学习,目标 2 采用类似的方法。
视觉统计学习领域,检查小脑的感觉预测和预测误差
并进一步测试所提出的时间约束 在目标 1-2 中,我们还测量了脑-小脑连接性。
将小脑置于更广泛的特定任务学习网络中,并询问脑-小脑是否
在目标 3 中,我们研究了小脑对非运动的因果贡献。
学习、测试大量患有小脑病理学的个体样本,并将他们的行为与
匹配的控制将用于检测和描述所利用的缺陷。
该项目提出了一个新的框架来理解小脑对非运动学习的贡献
并将为小脑在健康和疾病中更广泛的作用提供新的见解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Samuel David McDougle其他文献
Samuel David McDougle的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Samuel David McDougle', 18)}}的其他基金
Modeling and mapping multiple computational processes in human reinforcement learning
人类强化学习中的多个计算过程的建模和映射
- 批准号:
9761233 - 财政年份:2019
- 资助金额:
$ 41.88万 - 项目类别:
相似国自然基金
乳酸介导的组蛋白乳酸化调控哺乳动物主要合子基因组激活的机制研究
- 批准号:82301880
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
早期环境暴露对儿童哮喘免疫保护的动物实验和机制研究
- 批准号:82300031
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于供应链视角的动物源性食品中抗微生物药物耐药性传导机制及监管策略研究
- 批准号:72303209
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
热带森林土壤氮添加下微节肢动物对氮转化过程的调控
- 批准号:32360323
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
Slc39a13在哺乳动物铁代谢中的作用
- 批准号:32371226
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Dynamic neural coding of spectro-temporal sound features during free movement
自由运动时谱时声音特征的动态神经编码
- 批准号:
10656110 - 财政年份:2023
- 资助金额:
$ 41.88万 - 项目类别:
Integrative Analysis of Adaptive Information Processing and Learning-Dependent Circuit Reorganization in the Auditory System
听觉系统中自适应信息处理和学习依赖电路重组的综合分析
- 批准号:
10715925 - 财政年份:2023
- 资助金额:
$ 41.88万 - 项目类别:
Dissecting the functional organization of local hippocampal circuits underlying spatial representations
剖析空间表征下局部海马回路的功能组织
- 批准号:
10590363 - 财政年份:2023
- 资助金额:
$ 41.88万 - 项目类别:
A Connectomic Analysis of a Developing Brain Undergoing Neurogenesis
正在经历神经发生的发育中大脑的连接组学分析
- 批准号:
10719296 - 财政年份:2023
- 资助金额:
$ 41.88万 - 项目类别: