Multi-modal insights of spatially distributed cells with associations of diseases and drug response
空间分布细胞与疾病和药物反应关联的多模式见解
基本信息
- 批准号:10714602
- 负责人:
- 金额:$ 37.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-10 至 2028-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Project Summary
Spatial cellular heterogeneity contributes to the complexity of diseases, therapeutic treatment, and drug
response, which commonly involve the interplay between different molecular levels including genetic, epigenetic,
and cellular levels. Recent technological advances of spatial technologies have enabled the elucidation of single
cell heterogeneity with rich information and spatial locations that offer remarkable opportunities to understand
biological processes and molecular interplays involved in disease and therapeutics. Moreover, traditional
approaches mostly focus on a single type of data that cannot fully address this complexity and heterogeneity.
Therefore, there is a lack of integrative approaches that leverage the strengths of data from multiple sources
(e.g., genomics, epigenomics, clinical data) to achieve full insights into the pathobiology of complex disease and
drug response. Given these challenges and my unique multi-disciplinary training, the overall goals of my
research program are to develop a novel class of machine learning, statistical and deep learning approaches for
the enhancement, prioritization and interpretation of spatially organized cells in complex tissue, to better
understand the molecular mechanisms underpinning diseases and drug response, which will empower precision
medicine by identifying individualized biomarkers for disease prevention, diagnosis and treatment. Specifically,
in the next five years, my team will (i) develop a novel transfer learning approach to impute the transcriptomics
and epigenomics profiles in spatial slices; (ii) develop a computational framework to reveal disease-associated
phenotypes in spatially distributed cells, through leveraging Genome-Wide Association Studies (GWAS) studies;
(iii) develop a novel domain adaptation method to predict drug responses of spatial cells, using
pharmacogenomics knowledge base; (iv) develop a novel class of statistical methods for the joint analysis of
spatial transcriptomics and single-cell multi-omics data, thus unveil the underlying regulatory mechanisms in
diseases and drug response. In the meantime, supported by Wake Forest Comprehensive Cancer Center, we
will apply the methodologies to different studies such as Brain Metastasis and Alzheimer’s Disease for novel
scientific findings. We will work closely with collaborating biostatisticians and biologists to interpret the biological
discoveries. Importantly, we will work with experimental labs to validate the findings. In line with our previous
work, we will continue to make all developed methods into open-source software tools that are accessible and
useful to the biomedical research community.
项目摘要
空间细胞异质性有助于疾病,治疗和药物的复杂性
反应通常涉及不同分子水平之间的相互作用,包括遗传,表观遗传学,
和细胞水平。空间技术的最新技术进步使得阐明了单一的技术
细胞异质性具有丰富的信息和空间位置,提供了极大的理解机会
疾病和治疗涉及的生物过程和分子相互作用。而且,传统
方法主要集中在无法完全解决这种复杂性和异质性的单一类型数据上。
因此,缺乏综合方法来利用来自多个来源的数据优势
(例如,基因组学,表观基因组学,临床数据),以充分了解复杂疾病的病理学和
药物反应。考虑到这些挑战和我独特的多学科培训,我的总体目标
研究计划是为了开发一种新颖的机器学习,统计和深度学习方法
复杂组织中空间组织细胞的增强,优先级和解释,以更好地
了解支撑疾病和药物反应的分子机制,这将赋予精度
通过鉴定用于预防疾病,诊断和治疗的个性化生物标志物,医学。具体来说,
在接下来的五年中,我的团队将(i)开发一种新颖的转移学习方法来估算转录组学
和空间切片中的表观基因组学谱; (ii)开发一个计算框架以揭示与疾病相关的
通过利用全基因组关联研究(GWAS)研究,空间分布的细胞中的表型;
(iii)开发一种新型域的适应方法,以预测空间细胞的药物反应,并使用
药物基因组学知识库; (iv)开发了一种新型的统计方法,用于联合分析
空间转录组学和单细胞多态数据,因此揭示了基本的调节机制
疾病和药物反应。同时,在Wake Forest综合癌症中心的支持下,我们
将把这些方法应用于不同研究的方法,例如脑转移和阿尔茨海默氏病
科学发现。我们将与合作的生物统治者和生物学家紧密合作,以解释生物学
发现。重要的是,我们将与实验实验室合作以验证发现。与我们以前的
工作,我们将继续将所有开发的方法用于可访问的开源软件工具,并且
对生物医学研究界有用。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Detection of lineage-reprogramming efficiency of tumor cells in a 3D-printed liver-on-a-chip model.
- DOI:10.7150/thno.86921
- 发表时间:2023
- 期刊:
- 影响因子:12.4
- 作者:Lu Z;Miao X;Song Q;Ding H;Rajan SAP;Skardal A;Votanopoulos KI;Dai K;Zhao W;Lu B;Atala A
- 通讯作者:Atala A
共 1 条
- 1
相似海外基金
Uncovering Mechanisms of Racial Inequalities in ADRD: Psychosocial Risk and Resilience Factors for White Matter Integrity
揭示 ADRD 中种族不平等的机制:心理社会风险和白质完整性的弹性因素
- 批准号:1067635810676358
- 财政年份:2024
- 资助金额:$ 37.94万$ 37.94万
- 项目类别:
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:1074953910749539
- 财政年份:2024
- 资助金额:$ 37.94万$ 37.94万
- 项目类别:
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:1046225710462257
- 财政年份:2023
- 资助金额:$ 37.94万$ 37.94万
- 项目类别:
Core D: Integrated Computational Analysis Core
核心D:综合计算分析核心
- 批准号:1055589610555896
- 财政年份:2023
- 资助金额:$ 37.94万$ 37.94万
- 项目类别: