Spinal muscular atrophy: a novel role of SMN in axonal ribonucleoprotein complexe
脊髓性肌萎缩症:SMN 在轴突核糖核蛋白复合物中的新作用
基本信息
- 批准号:7293410
- 负责人:
- 金额:$ 19.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-08-01 至 2009-07-31
- 项目状态:已结题
- 来源:
- 关键词:ActinsAffectAmino AcidsAnimal ModelAnteriorAnterior Horn CellsAtrophicAttentionAxonBackBiologicalCell LineCell NucleusCellsChildhoodCodeComplexCultured CellsCytoplasmic GranulesDNADataDefectDevelopmentDiseaseDistalFunctional disorderGelGenesGeneticGenomicsGrowth ConesHeterogeneous Nuclear RNAHornsInfant MortalityInheritedIsotope LabelingLinkLocalizedMaintenanceMessenger RNAMethodsModelingMotorMotor NeuronsMusMuscle WeaknessMutationNatural regenerationNeuritesNeurogliaNeuromuscular DiseasesNeuronsNuclearPatientsPlayPrimary Cell CulturesProcessProtein BiosynthesisProtein DeficiencyProteinsProteomeProteomicsRNARNA SplicingRNA TransportRadiolabeledRegulationReporterResearchRibonucleoproteinsRoleSMN protein (spinal muscular atrophy)Small Nuclear RibonucleoproteinsSpinal CordSpinal Muscular AtrophyStable Isotope LabelingStagingStem cellsTestingTherapeuticTimeTranscriptTransgenic MiceTranslatingTranslational RegulationTranslationsWorkaxon guidanceaxonopathybasebeta Actincell motilitycell typedisease-causing mutationembryonic stem cellin vivoinnovationinterestmRNA Precursormolecular pathologymotor neuron degenerationnervous system developmentneuron lossneuronal cell bodynovelnovel strategiesparticlepromoterradiotracerred fluorescent proteinresearch study
项目摘要
DESCRIPTION (provided by applicant): Spinal muscular atrophy (SMA) represents the most common genetic cause of infant mortality. This autosomal recessive neuromuscular disorder is characterized by degeneration of the anterior horn cells of the spinal cord, leading to symmetrical muscle weakness and atrophy. The pathomechanism is still unclear and currently there is no cure or treatment available to stop its progression. SMA is caused by mutations or deletions in the ubiquitously expressed gene encoding the survival of motor neuron protein (SMN). Previous work has focused mainly on the essential role of SMN in the efficient assembly and remodeling of spliceosomal ribonucleoprotein (RNP) complexes in all cell types. It is still unknown why motor neurons are so specifically vulnerable to low levels of SMN and how SMN deficiency selectively causes motor neuron cell death. In neurons, SMN is found located in both the nucleus and in neurites and it is actively transported in the form of dynamic granules. This suggests a novel neuron-specific function of SMN and we hypothesize that an inefficiency of axonal SMN-associated RNPs may contribute to SMA. To better understand the biological role of SMN in the development and maintenance of motor axons, we propose to investigate the in vivo localization of SMN-RNP complexes. We will generate transgenic mice that express biological functional Smn fused to a fluorescent protein reporter to study the dynamic localization of Smn-containing RNP granules during development. Previously, we have shown that growth cones and distal axons of SMN deficient primary motor neurons contain reduced levels of ¿- actin mRNA and protein. New data suggest that Smn-deficiency affects transport and/or local translation of additional transcripts and we will identify and study these affected transcripts and proteins. This proposal will focus on a novel approach to overcome limitations of primary cell culture by using stem-cell derived motor neurons growing as compartmentalized cultures that separate cell bodies and axons. We will identify RNAs that are transported in axons of wild type and SMN-deficient motor neurons and we will also compare the proteome of locally translated proteins in the axons of wild type and Smn-deficient motor neurons. Our results will clarify a potential role of SMN in the transport, stability or local translation of mRNAs in neuronal processes. As these processes have been linked to growth cone motility and axon guidance, it is of big interest to find out how SMN may be involved and how defects in the delivery of RNP complexes may trigger or at least modulate the disease process in SMA. The proposed research is also important more broadly for understanding the function of mRNA localization during the development of the nervous system. Spinal muscular Atrophy (SMA) is an inherited pediatric disease caused by mutations or deletions in a gene encoding the survival motor neuron protein (SMN) that results in rapid degeneration of spinal cord motor neurons and is the leading genetic cause of infant mortality. Its pathomechanism is still unclear and currently there is no cure or treatment available to stop its progression. We propose studies on the axonal function of SMN and the underlying molecular pathology of SMA that have the potential to reveal essential aspects of motor neuron function and development and also to suggest therapeutic strategies for this disease.
描述(由申请人提供):脊髓性肌萎缩症(SMA)是导致婴儿死亡的最常见遗传原因,这种常染色体隐性神经肌肉疾病的特征是脊髓前角细胞退化,导致对称性肌肉无力和萎缩。 SMA 的发病机制尚不清楚,目前尚无有效的治愈方法或治疗方法来阻止其进展,该病是由编码运动神经元存活蛋白的普遍表达基因突变或缺失引起的。 (SMN)。之前的工作主要集中在 SMN 在所有细胞类型中剪接体核糖核蛋白 (RNP) 复合物的组装和重塑中的重要作用,但目前尚不清楚为什么运动神经元如此特别容易受到低水平的 SMN 和 SMN 的影响。 SMN 缺陷如何选择性地导致神经元运动颗粒神经元细胞死亡为了更好地发挥 SMN 在运动轴突发育和维持中的生物学作用,我们建议研究 SMN-RNP 复合物的体内定位。将产生表达与荧光蛋白报告基因融合的生物功能性 Smn 的转基因小鼠,以研究含有 Smn 的 RNP 颗粒在发育过程中的动态定位。 SMN 缺陷的初级运动神经元的视锥细胞和远端轴突的 ¿ 水平降低- 肌动蛋白 mRNA 和蛋白质。新数据表明 Smn 缺陷会影响其他转录本的运输和/或局部翻译,我们将鉴定和研究这些受影响的转录本和蛋白质。本提案将重点关注克服原代细胞培养局限性的新方法。通过使用干细胞衍生的运动神经元作为分隔培养物来分离细胞体和轴突,我们将鉴定在野生型和 SMN 缺陷运动神经元的轴突中运输的 RNA,我们还将比较本地翻译蛋白的蛋白质组。我们的研究结果将阐明 SMN 在神经元过程中 mRNA 的运输、稳定性或局部翻译中的潜在作用,因为这些过程与生长锥运动和轴突引导有关。人们非常感兴趣的是找出 SMN 如何参与以及 RNP 复合物的传递缺陷如何触发或至少调节 SMA 的疾病过程。这项研究对于更广泛地了解 mRNA 定位在 SMA 过程中的功能也很重要。脊髓性肌萎缩症 (SMA) 是一种遗传性儿科疾病,由编码运动神经元存活蛋白 (SMN) 的基因突变或缺失引起,导致脊髓运动神经元快速退化,是主要的遗传原因。其病理机制尚不清楚,目前尚无有效的治愈方法或治疗方法来阻止其进展,我们建议对 SMN 的轴突功能和 SMA 的分子病理学进行研究,以揭示运动神经元的重要方面。功能与发育并提出该疾病的治疗策略。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wilfried Rossoll其他文献
Wilfried Rossoll的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wilfried Rossoll', 18)}}的其他基金
NUP50 as a modifier and risk factor for TDP-43 pathology in FTD/ALS
NUP50 作为 FTD/ALS 中 TDP-43 病理的修饰剂和危险因素
- 批准号:
10800366 - 财政年份:2023
- 资助金额:
$ 19.13万 - 项目类别:
Capturing the molecular complexity of tau pathology-associated proteomes involved in the etiology of Alzheimer's disease and related dementias
捕获与阿尔茨海默病和相关痴呆病因学相关的 tau 病理相关蛋白质组的分子复杂性
- 批准号:
10763607 - 财政年份:2022
- 资助金额:
$ 19.13万 - 项目类别:
Nuclear import receptors as modifiers of TDP-43 phase transition and toxicity in FTD/ALS
核输入受体作为 TDP-43 相变和 FTD/ALS 毒性的调节剂
- 批准号:
10608681 - 财政年份:2022
- 资助金额:
$ 19.13万 - 项目类别:
Capturing the molecular complexity of tau pathology-associated proteomes involved in the etiology of Alzheimer's disease and related dementias
捕获与阿尔茨海默病和相关痴呆病因学相关的 tau 病理相关蛋白质组的分子复杂性
- 批准号:
10525133 - 财政年份:2022
- 资助金额:
$ 19.13万 - 项目类别:
RNA Processing Defects in SMA and Their Contribution to the Disease Phenotype
SMA 中的 RNA 加工缺陷及其对疾病表型的贡献
- 批准号:
9098856 - 财政年份:2015
- 资助金额:
$ 19.13万 - 项目类别:
RNA Processing Defects in SMA and Their Contribution to the Disease Phenotype
SMA 中的 RNA 加工缺陷及其对疾病表型的贡献
- 批准号:
9265971 - 财政年份:2015
- 资助金额:
$ 19.13万 - 项目类别:
Spinal Muscular Atrophy: Cell-based drug screens for treatment of axonal defects
脊髓性肌萎缩症:用于治疗轴突缺陷的细胞药物筛选
- 批准号:
7897178 - 财政年份:2010
- 资助金额:
$ 19.13万 - 项目类别:
Spinal Muscular Atrophy: Cell-based drug screens for treatment of axonal defects
脊髓性肌萎缩症:用于治疗轴突缺陷的细胞药物筛选
- 批准号:
8049704 - 财政年份:2010
- 资助金额:
$ 19.13万 - 项目类别:
Spinal muscular atrophy: a novel role of SMN in axonal ribonucleoprotein complexe
脊髓性肌萎缩症:SMN 在轴突核糖核蛋白复合物中的新作用
- 批准号:
7473926 - 财政年份:2007
- 资助金额:
$ 19.13万 - 项目类别:
相似国自然基金
低蛋白日粮脂肪和蛋白质互作影响氨基酸消化率的机制
- 批准号:32302793
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
孕期母体支链氨基酸代谢紊乱和子代支链氨基酸代谢酶基因遗传变异联合作用对儿童神经行为发育影响的队列研究
- 批准号:82373581
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
影响植物磷砷选择性吸收关键氨基酸位点的挖掘及分子机制研究
- 批准号:42307009
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
氨基酸多态性对代谢生成亚硝(酰)胺前体物的影响机理研究
- 批准号:22376114
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
3型鸭甲型肝炎病毒2C蛋白氨基酸位点变异对病毒致病性的影响及机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Regulation of GluN2B-NMDA Receptors by Interactions with the Actin Cytoskeleton
通过与肌动蛋白细胞骨架相互作用调节 GluN2B-NMDA 受体
- 批准号:
10606121 - 财政年份:2023
- 资助金额:
$ 19.13万 - 项目类别:
Role of myosin 1e in podocyte biology and renal filtration
肌球蛋白 1e 在足细胞生物学和肾滤过中的作用
- 批准号:
10587345 - 财政年份:2023
- 资助金额:
$ 19.13万 - 项目类别:
Use of novel methods to study the biochemical mechanisms of ACTG2 mutations in visceral myopathy
使用新方法研究内脏肌病中ACTG2突变的生化机制
- 批准号:
10337038 - 财政年份:2021
- 资助金额:
$ 19.13万 - 项目类别:
Convergent mechanisms for neurodevelopmental disorder genes
神经发育障碍基因的趋同机制
- 批准号:
10405021 - 财政年份:2021
- 资助金额:
$ 19.13万 - 项目类别:
Use of novel methods to study the biochemical mechanisms of ACTG2 mutations in visceral myopathy
使用新方法研究内脏肌病中ACTG2突变的生化机制
- 批准号:
10521300 - 财政年份:2021
- 资助金额:
$ 19.13万 - 项目类别: