Spinal muscular atrophy: a novel role of SMN in axonal ribonucleoprotein complexe

脊髓性肌萎缩症:SMN 在轴突核糖核蛋白复合物中的新作用

基本信息

  • 批准号:
    7293410
  • 负责人:
  • 金额:
    $ 19.13万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-08-01 至 2009-07-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Spinal muscular atrophy (SMA) represents the most common genetic cause of infant mortality. This autosomal recessive neuromuscular disorder is characterized by degeneration of the anterior horn cells of the spinal cord, leading to symmetrical muscle weakness and atrophy. The pathomechanism is still unclear and currently there is no cure or treatment available to stop its progression. SMA is caused by mutations or deletions in the ubiquitously expressed gene encoding the survival of motor neuron protein (SMN). Previous work has focused mainly on the essential role of SMN in the efficient assembly and remodeling of spliceosomal ribonucleoprotein (RNP) complexes in all cell types. It is still unknown why motor neurons are so specifically vulnerable to low levels of SMN and how SMN deficiency selectively causes motor neuron cell death. In neurons, SMN is found located in both the nucleus and in neurites and it is actively transported in the form of dynamic granules. This suggests a novel neuron-specific function of SMN and we hypothesize that an inefficiency of axonal SMN-associated RNPs may contribute to SMA. To better understand the biological role of SMN in the development and maintenance of motor axons, we propose to investigate the in vivo localization of SMN-RNP complexes. We will generate transgenic mice that express biological functional Smn fused to a fluorescent protein reporter to study the dynamic localization of Smn-containing RNP granules during development. Previously, we have shown that growth cones and distal axons of SMN deficient primary motor neurons contain reduced levels of ¿- actin mRNA and protein. New data suggest that Smn-deficiency affects transport and/or local translation of additional transcripts and we will identify and study these affected transcripts and proteins. This proposal will focus on a novel approach to overcome limitations of primary cell culture by using stem-cell derived motor neurons growing as compartmentalized cultures that separate cell bodies and axons. We will identify RNAs that are transported in axons of wild type and SMN-deficient motor neurons and we will also compare the proteome of locally translated proteins in the axons of wild type and Smn-deficient motor neurons. Our results will clarify a potential role of SMN in the transport, stability or local translation of mRNAs in neuronal processes. As these processes have been linked to growth cone motility and axon guidance, it is of big interest to find out how SMN may be involved and how defects in the delivery of RNP complexes may trigger or at least modulate the disease process in SMA. The proposed research is also important more broadly for understanding the function of mRNA localization during the development of the nervous system. Spinal muscular Atrophy (SMA) is an inherited pediatric disease caused by mutations or deletions in a gene encoding the survival motor neuron protein (SMN) that results in rapid degeneration of spinal cord motor neurons and is the leading genetic cause of infant mortality. Its pathomechanism is still unclear and currently there is no cure or treatment available to stop its progression. We propose studies on the axonal function of SMN and the underlying molecular pathology of SMA that have the potential to reveal essential aspects of motor neuron function and development and also to suggest therapeutic strategies for this disease.
描述(由适用提供):脊柱肌肉萎缩(SMA)代表婴儿死亡率最常见的遗传原因。这种常染色体隐性神经肌肉疾病的特征是脊髓的前角细胞退化,导致对称肌肉无力和萎缩。病理机制仍不清楚,目前尚无治愈或治疗可阻止其进展。 SMA是由编码运动神经元蛋白(SMN)存活的普遍表达基因中的突变或缺失引起的。先前的工作主要集中在SMN在所有细胞类型中的剪接体色膜蛋白(RNP)配合物的有效组装和重塑中的重要作用。仍然未知运动神经元如此易受SMN水平的特定症状以及SMN缺乏症如何有选择地导致运动神经元细胞死亡。在神经元中,SMN均位于核和神经元中,并以动态颗粒的形式积极运输。这表明SMN具有新的神经特异性功能,我们假设轴突SMN相关的RNP效率低下可能会导致SMA。为了更好地了解SMN在运动轴突的开发和维持中的生物学作用,我们建议研究SMN-RNP复合物的体内定位。我们将生成转基因小鼠,表达与荧光蛋白报道融合的生物学功能性SMN,以研究开发过程中含有SMN的RNP颗粒的动态定位。以前,我们已经表明,SMN缺乏原发性运动神经元的生长锥和远端轴突含有降低的 - 肌动蛋白mRNA和蛋白质的水平。新数据表明,SMN缺陷会影响其他成绩单的运输和/或局部翻译,我们将识别和研究这些受影响的成绩单和蛋白质。该建议将着重于一种新的方法来克服原代细胞培养的局限性,通过使用生长的干细胞衍生运动神经元作为分隔细胞体和轴突的分隔培养物。我们将确定在野生型和SMN缺乏运动神经元轴突中运输的RNA,我们还将比较野生型和SMN缺陷运动神经元轴突中局部翻译的蛋白质的蛋白质。我们的结果将阐明SMN在神经元过程中mRNA的运输,稳定性或局部翻译中的潜在作用。由于这些过程与生长锥运动和轴突的指导有关,因此了解如何参与SMN以及RNP复合物输送的缺陷如何触发或至少调节SMA中的疾病过程是很大的兴趣。拟议的研究对于理解神经系统发展过程中mRNA定位的功能也更为重要。脊柱肌肉萎缩(SMA)是由编码生存运动神经元蛋白(SMN)的突变或缺失引起的遗传性儿科疾病,导致脊髓运动神经元快速退化,是婴儿死亡率的主要遗传原因。病理机理尚不清楚,目前尚无治愈或治疗可阻止其进展。我们提出了有关SMN的轴突功能和SMA的潜在分子病理的研究,这些功能有可能揭示运动神经元功能和发育的基本方面,并提出针对该疾病的治疗策略。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Wilfried Rossoll其他文献

Wilfried Rossoll的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Wilfried Rossoll', 18)}}的其他基金

NUP50 as a modifier and risk factor for TDP-43 pathology in FTD/ALS
NUP50 作为 FTD/ALS 中 TDP-43 病理的修饰剂和危险因素
  • 批准号:
    10800366
  • 财政年份:
    2023
  • 资助金额:
    $ 19.13万
  • 项目类别:
Capturing the molecular complexity of tau pathology-associated proteomes involved in the etiology of Alzheimer's disease and related dementias
捕获与阿尔茨海默病和相关痴呆病因学相关的 tau 病理相关蛋白质组的分子复杂性
  • 批准号:
    10763607
  • 财政年份:
    2022
  • 资助金额:
    $ 19.13万
  • 项目类别:
Nuclear import receptors as modifiers of TDP-43 phase transition and toxicity in FTD/ALS
核输入受体作为 TDP-43 相变和 FTD/ALS 毒性的调节剂
  • 批准号:
    10608681
  • 财政年份:
    2022
  • 资助金额:
    $ 19.13万
  • 项目类别:
Capturing the molecular complexity of tau pathology-associated proteomes involved in the etiology of Alzheimer's disease and related dementias
捕获与阿尔茨海默病和相关痴呆病因学相关的 tau 病理相关蛋白质组的分子复杂性
  • 批准号:
    10525133
  • 财政年份:
    2022
  • 资助金额:
    $ 19.13万
  • 项目类别:
RNA Processing Defects in SMA and Their Contribution to the Disease Phenotype
SMA 中的 RNA 加工缺陷及其对疾病表型的贡献
  • 批准号:
    9098856
  • 财政年份:
    2015
  • 资助金额:
    $ 19.13万
  • 项目类别:
RNA Processing Defects in SMA and Their Contribution to the Disease Phenotype
SMA 中的 RNA 加工缺陷及其对疾病表型的贡献
  • 批准号:
    9265971
  • 财政年份:
    2015
  • 资助金额:
    $ 19.13万
  • 项目类别:
Spinal Muscular Atrophy: Cell-based drug screens for treatment of axonal defects
脊髓性肌萎缩症:用于治疗轴突缺陷的细胞药物筛选
  • 批准号:
    7897178
  • 财政年份:
    2010
  • 资助金额:
    $ 19.13万
  • 项目类别:
Spinal Muscular Atrophy: Cell-based drug screens for treatment of axonal defects
脊髓性肌萎缩症:用于治疗轴突缺陷的细胞药物筛选
  • 批准号:
    8049704
  • 财政年份:
    2010
  • 资助金额:
    $ 19.13万
  • 项目类别:
Spinal muscular atrophy: a novel role of SMN in axonal ribonucleoprotein complexe
脊髓性肌萎缩症:SMN 在轴突核糖核蛋白复合物中的新作用
  • 批准号:
    7473926
  • 财政年份:
    2007
  • 资助金额:
    $ 19.13万
  • 项目类别:

相似国自然基金

低蛋白日粮脂肪和蛋白质互作影响氨基酸消化率的机制
  • 批准号:
    32302793
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
关键非催化氨基酸残基影响新型GH43家族双功能酶底物特异性的机制研究
  • 批准号:
    32301052
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
影响植物磷砷选择性吸收关键氨基酸位点的挖掘及分子机制研究
  • 批准号:
    42307009
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
RET基因634位点不同氨基酸改变对甲状腺C细胞的影响与机制研究
  • 批准号:
    82370790
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目

相似海外基金

Role of myosin 1e in podocyte biology and renal filtration
肌球蛋白 1e 在足细胞生物学和肾滤过中的作用
  • 批准号:
    10587345
  • 财政年份:
    2023
  • 资助金额:
    $ 19.13万
  • 项目类别:
Regulation of GluN2B-NMDA Receptors by Interactions with the Actin Cytoskeleton
通过与肌动蛋白细胞骨架相互作用调节 GluN2B-NMDA 受体
  • 批准号:
    10606121
  • 财政年份:
    2023
  • 资助金额:
    $ 19.13万
  • 项目类别:
Use of novel methods to study the biochemical mechanisms of ACTG2 mutations in visceral myopathy
使用新方法研究内脏肌病中ACTG2突变的生化机制
  • 批准号:
    10337038
  • 财政年份:
    2021
  • 资助金额:
    $ 19.13万
  • 项目类别:
Convergent mechanisms for neurodevelopmental disorder genes
神经发育障碍基因的趋同机制
  • 批准号:
    10405021
  • 财政年份:
    2021
  • 资助金额:
    $ 19.13万
  • 项目类别:
Use of novel methods to study the biochemical mechanisms of ACTG2 mutations in visceral myopathy
使用新方法研究内脏肌病中ACTG2突变的生化机制
  • 批准号:
    10521300
  • 财政年份:
    2021
  • 资助金额:
    $ 19.13万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了