Programmable DNA Nanostructures as Biomedical and Structural Scaffolds
可编程 DNA 纳米结构作为生物医学和结构支架
基本信息
- 批准号:10711302
- 负责人:
- 金额:$ 38.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2028-07-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAddressAdoptedAntibodiesAreaAwardBindingBiodistributionBiologicalBiological AvailabilityBiosensing TechniquesCell Culture TechniquesCellsChemicalsCrystallizationCrystallographyDNADataDevelopmentDiseaseDrug CarriersDrug Delivery SystemsDrug ScreeningFaceFreezingHealthImmune responseLigandsMethodsMinor GrooveModificationMyotonic dystrophy type 1NanostructuresNanotechnologyNational Institute of General Medical SciencesOligonucleotidesPeptidesPharmaceutical PreparationsPolycyclic CompoundsPositioning AttributeProteinsRadiation induced damageResearchResearch PersonnelResolutionRoentgen RaysScaffolding ProteinStructureSystemic diseaseToxic effectUse of New TechniquesValidationWorkX-Ray Crystallographybioimagingbody systemdesigndesign and constructiondrug candidatefluorophoreimprovedmouse modelnanoparticlepractical applicationpre-clinicalscaffoldscreeningself assemblytechnology platformx-ray free-electron laser
项目摘要
PROJECT ABSTRACT/SUMMARY
DNA nanotechnology offers near-atomic control for building structures, with precise positioning of guest
molecules such as antibodies, fluorophores and ligands that make them potentially useful in a number of
biological applications such as biosensing, drug delivery, cell modulation and bioimaging. However, there are
still many challenges that need to be addressed for DNA nanotechnology to reach its full potential for practical
applications. In this proposal, we focus on two main areas of development in DNA nanotechnology to address
these challenges: (1) Creating a robust, multifunctional drug delivery platform for treating multisystemic diseases,
and (2) designing 3D DNA crystals as scaffolds for X-ray structure determination and characterization of such
3D lattices using the new technique of Serial Femtosecond X-ray Crystallography (SFX).
For drug delivery, we will develop DNA polyhedra as drug carriers for delivering a new class of modified polycyclic
compounds (MPCs) to multiple organ systems and enhancing drug candidate screening using myotonic
dystrophy type 1 (DM1) as a testbed disease. Our work will provide quantifiable loading of these minor groove
binding drugs and thorough validation of drug delivery efficiency from cell culture to preclinical DM1 mouse
models, establishing cell internalization, lack of toxicity and immune response, cell- and disease-specific
targeting, bioavailability and biodistribution of the drug-loaded DNA nanostructures.
For developing DNA nanostructures as structural scaffolds, we will design and construct DNA motifs that
assemble into 3D DNA crystals with different cavity sizes that allow hosting guests of different sizes ranging from
nanoparticles to proteins. We will improve resolution of the crystals by programming crystal contacts and
incorporating chemical modifications and demonstrate macromolecular scaffolding of proteins using triplex
forming oligonucleotides (TFOs) as tethers and peptides using PNA linkers. We will develop methods to grow
microcrystals of these DNA motifs for structural analysis using SFX, where diffraction data is collected using high
intensity X-ray free-electron lasers, that eliminate the need for large single crystals, freezing, and radiation
damage associated with traditional crystallography.
This proposed research extends beyond a single disease or health issue, making this work well-suited for the
R35 Maximizing Investigators’ Research Award (MIRA) at the NIGMS. In the long-term, I envision that our
modular, platform technology using DNA nanostructures can be adopted by other labs for different disease
treatments and drug screening (drug delivery) and to obtain crystallographic information of hard-to-crystallize
molecules (macromolecular scaffolds).
项目摘要/总结
DNA 纳米技术为建筑结构提供近原子控制,并精确定位宾客
抗体、荧光团和配体等分子使其在许多领域具有潜在用途
然而,还有生物传感、药物输送、细胞调节和生物成像等生物学应用。
DNA 纳米技术要充分发挥其实际应用潜力,仍需解决许多挑战
在本提案中,我们重点关注 DNA 纳米技术的两个主要发展领域,以解决这一问题。
这些挑战:(1)创建一个强大的多功能药物输送平台来治疗多系统疾病,
(2) 设计 3D DNA 晶体作为支架,用于 X 射线结构测定和表征
使用串行飞秒 X 射线晶体学 (SFX) 新技术的 3D 晶格。
对于药物输送,我们将开发 DNA 多面体作为药物载体,用于输送新型修饰多环化合物
化合物(MPC)对多个器官系统的影响,并使用肌强直增强候选药物筛选
1 型营养不良 (DM1) 作为一种试验疾病,我们的工作将提供这些小沟的可量化负荷。
从细胞培养物到临床前 DM1 小鼠的药物输送效率的结合和彻底验证
模型,建立细胞内化,缺乏毒性和免疫反应,细胞和疾病特异性
载药DNA纳米结构的靶向性、生物利用度和生物分布。
为了开发 DNA 纳米结构作为结构支架,我们将设计和构建 DNA 基序
组装成具有不同腔体尺寸的 3D DNA 晶体,可容纳不同尺寸的客人,从
我们将通过编程晶体接触来提高晶体的分辨率。
结合化学修饰并使用三链体展示蛋白质的大分子支架
我们将开发使用 PNA 连接体形成寡核苷酸 (TFO) 作为系链和肽的方法。
使用 SFX 对这些 DNA 基序的微晶体进行结构分析,其中使用高光谱仪收集衍射数据
高强度 X 射线自由电子激光器,无需大型单晶、冷冻和辐射
与传统晶体学相关的损伤。
这项拟议的研究超越了单一疾病或健康问题,使这项工作非常适合
NIGMS 的 R35 最大化研究者研究奖 (MIRA) 从长远来看,我预计我们的
其他实验室可以采用使用 DNA 纳米结构的模块化平台技术来治疗不同的疾病
治疗和药物筛选(药物输送)并获得难结晶的晶体学信息
分子(高分子支架)。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A DNA rotary nanodevice operated by enzyme-initiated strand resetting.
- DOI:10.1039/d3cc05487j
- 发表时间:2023-12
- 期刊:
- 影响因子:4.9
- 作者:A. Chandrasekaran
- 通讯作者:A. Chandrasekaran
siRNA-loaded DNA nanostructures restore endothelial leakiness.
- DOI:10.1039/d3nh90040a
- 发表时间:2023-10
- 期刊:
- 影响因子:9.7
- 作者:A. Chandrasekaran
- 通讯作者:A. Chandrasekaran
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Arun Richard Chandrasekaran其他文献
Arun Richard Chandrasekaran的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Arun Richard Chandrasekaran', 18)}}的其他基金
DNA Nanostructures as siRNA Delivery Vehicles for Alzheimer's Therapy
DNA 纳米结构作为 siRNA 递送载体用于治疗阿尔茨海默病
- 批准号:
10418236 - 财政年份:2022
- 资助金额:
$ 38.56万 - 项目类别:
DNA Nanostructures as siRNA Delivery Vehicles for Alzheimer's Therapy
DNA 纳米结构作为 siRNA 递送载体用于治疗阿尔茨海默病
- 批准号:
10725478 - 财政年份:2022
- 资助金额:
$ 38.56万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Optimization of electromechanical monitoring of engineered heart tissues
工程心脏组织机电监测的优化
- 批准号:
10673513 - 财政年份:2023
- 资助金额:
$ 38.56万 - 项目类别:
Engineering Human Organizer To Study Left-Right Symmetry Breaking
工程人类组织者研究左右对称性破缺
- 批准号:
10667938 - 财政年份:2023
- 资助金额:
$ 38.56万 - 项目类别:
Unlocking whole brain, layer-specific functional connectivity with 3D VAPER fMRI
通过 3D VAPER fMRI 解锁全脑、特定层的功能连接
- 批准号:
10643636 - 财政年份:2023
- 资助金额:
$ 38.56万 - 项目类别:
Commercial translation of high-density carbon fiber electrode arrays for multi-modal analysis of neural microcircuits
用于神经微电路多模态分析的高密度碳纤维电极阵列的商业转化
- 批准号:
10761217 - 财政年份:2023
- 资助金额:
$ 38.56万 - 项目类别:
Morphologic and Kinematic Adaptations of the Subtalar Joint after Ankle Fusion Surgery in Patients with Varus-type Ankle Osteoarthritis
内翻型踝骨关节炎患者踝关节融合手术后距下关节的形态和运动学适应
- 批准号:
10725811 - 财政年份:2023
- 资助金额:
$ 38.56万 - 项目类别: